

The goal of this study is to train a model in order to predict the percentage of bodyfat in men. The dataset used in this case study is found in https://www.kaggle.com/datasets/fedesoriano/body-fat-prediction-dataset and has 14 features and 251 samples. This dataset contains information on certain factors like Density determined from underwater weighing, age, weight, height, neck circumference, Chest circumference, Abdomen 2 circumference, Hip circumference, Thigh circumference, Knee circumference, Ankle circumference, Biceps (extended) circumference, Forearm circumference, Wrist circumference. The dataset contains no missing values and also all features are numerical, therefore there is no need to for transforming any of them.

Step 1: Import data from file

File Edit Data Transform

Right click on the input spreadsheet and choose the option "Import from file". Then navigate through your files to load the one with the housing price data.

	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)	Col9 (D)		Col1	Col2	Col3	Col4	Col5	Col6	Col7	(
User Header	User Row ID	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	User Header	User Row ID							ĥ
1		1.33E7	7420.0	4.0	2.0	3.0	1.0	0.0	0.0	1								
2		1.225E7	8960.0	4.0	4.0	4.0	1.0	0.0	0.0	2								
3		1.225E7	9960.0	3.0	2.0	2.0	1.0	0.0	1.0	3								
4		1.2215E7	7500.0	4.0	2.0	2.0	1.0	0.0	1.0	4								
5		1.141E7	7420.0	4.0	1.0	2.0	1.0	1.0	1.0	5								
6		1.085E7	7500.0	3.0	3.0	1.0	1.0	0.0	1.0	6								
7		1.015E7	8580.0	4.0	3.0	4.0	1.0	0.0	0.0	1								
8		1.015E7	16200.0	5.0	3.0	2.0	1.0	0.0	0.0	8								
9		9870000.0	8100.0	4.0	1.0	2.0	1.0	1.0	1.0	9								
10		9800000.0	5750.0	3.0	2.0	4.0	1.0	1.0	0.0	10								
11		9800000.0	13200.0	3.0	1.0	2.0	1.0	0.0	1.0	11								
12		9681000.0	6000.0	4.0	3.0	2.0	1.0	1.0	1.0	12								
13		9310000.0	6550.0	4.0	2.0	2.0	1.0	0.0	0.0	13								
14		9240000.0	3500.0	4.0	2.0	2.0	1.0	0.0	0.0	14								
15		9240000.0	7800.0	3.0	2.0	2.0	1.0	0.0	0.0	15								
16		9100000.0	6000.0	4.0	1.0	2.0	1.0	0.0	1.0	16								
17		9100000.0	6600.0	4.0	2.0	2.0	1.0	1.0	1.0	17								
18		8960000.0	8500.0	3.0	2.0	4.0	1.0	0.0	0.0	18								-
19		8890000.0	4600.0	3.0	2.0	2.0	1.0	1.0	0.0	19								-
20		8855000.0	6420.0	3.0	2.0	2.0	1.0	0.0	0.0	20								-
21	3	8750000.0	4320.0	3.0	10	20	10	0.0	10	21	<							~

Step 2: Manipulate data

In order to use the data for training we have to exclude any columns that do not contain features. In our dataset there are no such columns. Therefore, we will include all columns in the training. We follow these steps to execute this:

- On the menu click on "Data Transformation" \rightarrow "Data Manipulation" \rightarrow "Select Column(s)"
- Select all columns.

File Edit	Data Transforma	tion Ana	lytics Statistics	Plot Help)	
	Normalizers	•				
IMPORT	Data Manipulatio	on ▶ Rem	ove Column(s)			
	Split	Selection	t Column(s)	_		
,	Variable Selectio	n ▶ Matr	iv Transpose			
		Sort	hy Column			
		50IL	lissing Column(s)	Values		
		FILLIV	issing column(s)	values		
	Col1	Col2 (D) Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D
User Header	User Row ID	Density	BodyFat	Age	Weight	Height
1		1.0708	12.3	23.0	154.25	67.75
2		1.0853	6.1	22.0	173.25	72.25
3		1.0414	25.3	22.0	154.0	66.25
4		1.0751	10.4	26.0	184.75	72.25
5		1.034	28.7	24.0	184.25	71.25
6		1.0502	20.9	24.0	210.25	74.75
7		1.0549	19.2	26.0	181.0	69.75
8		1.0704	12.4	25.0	176.0	72.5
9		1.09	4.1	25.0	191.0	74.0
10		1.0722	11.7	23.0	198.25	73.5
11		1.083	7.1	26.0	186.25	74.5
12		1.0812	7.8	27.0	216.0	76.0
13		1.0513	20.8	32.0	180.5	69.5
14		1.0505	21.2	30.0	205.25	71.25
15		1.0484	22.1	35.0	187.75	69.5
16		1.0512	20.9	35.0	162.75	66.0
17		1.0333	29.0	34.0	195.75	71.0
18		1.0468	22.9	32.0	209.25	71.0
19		1.0622	16.0	28.0	183.75	67.75
20		1.061	16.5	33.0	211.75	73.5
		1 0554	40.4	20.0	170.0	000

The data will appear in the output spreadsheet.

Step 3: Split data

Create a new tab by pressing the "+" button on the bottom of the page with the name "TRAIN_TEST_SPLIT" which we will use for splitting to create the train and test set.

Import data into the input spreadsheet of the "TRAIN_TEST_SPLIT" tab from the output of the "IMPORT" tab by right-clicking on the input spreadsheet and then choosing "Import from SpreadSheet".

File Edit F)ata Transforma	tion Analyti	rs Statistics	Plot Help													-	o >
	TRAIN_TEST_SPLI			The map														
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)	Col9 (D)	Col10		Col1	Col2	Col3	Col4	Col5	Col6	Col
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest	Abdomen	Hip 🙃	User Header	User Row ID						
1		1.0708000	12.3000000	23.0000000	154.2500000	67.7500000	36.2000000	93.1000000	85.2000000	94.500	1							
2		1.0853000	6.1000000	22.0000000	173.2500000	72.2500000	38.5000000	93.6000000	83.0000000	98.700	2							+
3		1.0414000	25.3000000	22.0000000	154.0000000	66.2500000	34.0000000	95.8000000	87.9000000	99.200	3							+
4		1.0751000	10.4000000	26.000000	184.7500000	72.2500000	37.4000000	101.8000000	86.4000000	101.20	4							-
5		1.0340000	28.7000000	24.0000000	184.2500000	71.2500000	34.4000000	97.3000000	100.0000000	101.90	5							
6		1.0502000	20.9000000	24.0000000	210.2500000	74.7500000	39.0000000	104.5000000	94.4000000	107.80	6							
7		1.0549000	19.2000000	26.0000000	181.0000000	69.7500000	36.4000000	105.1000000	90.7000000	100.30	7							
8		1.0704000	12.4000000	25.000000	176.0000000	72.5000000	37.8000000	99.6000000	88.5000000	97.100	8							
9		1.0900000	4.1000000	25.0000000	191.0000000	74.0000000	38.1000000	100.9000000	82.5000000	99.900	9							
10		1.0722000	11.7000000	23.0000000	198.2500000	73.5000000	42.1000000	99.6000000	88.6000000	104.10	10							
11		1.0830000	7.1000000	26.0000000	186.2500000	74.5000000	38.5000000	101.5000000	83.6000000	98.200	11							
12		1.0812000	7.8000000	27.0000000	216.0000000	76.0000000	39.4000000	103.6000000	90.9000000	107.70	12							
13		1.0513000	20.8000000	32.0000000	180.5000000	69.5000000	38.4000000	102.0000000	91.6000000	103.90	13							
14		1.0505000	21.2000000	30.0000000	205.2500000	71.2500000	39.4000000	104.1000000	101.8000000	108.60	14							
15		1.0484000	22.1000000	35.0000000	187.7500000	69.5000000	40.5000000	101.3000000	96.4000000	100.10	15							
16		1.0512000	20.9000000	35.0000000	162.7500000	66.0000000	36.4000000	99.1000000	92.8000000	99.200	16							
17		1.0333000	29.0000000	34.0000000	195.7500000	71.0000000	38.9000000	101.9000000	96.4000000	105.20	17							
18		1.0468000	22.9000000	32.0000000	209.2500000	71.0000000	42.1000000	107.6000000	97.5000000	107.00	18							
19		1.0622000	16.0000000	28.0000000	183.7500000	67.7500000	38.0000000	106.8000000	89.6000000	102.40	19							
20		1.0610000	16.5000000	33.0000000	211.7500000	73.5000000	40.0000000	106.2000000	100.5000000	109.00	20							
21		1.0551000	19.1000000	28.0000000	179.0000000	68.0000000	39,1000000	103.3000000	95,9000000	104.90	21			1				

Split the dataset by choosing from the top ribbon: "Data Transformation" \rightarrow "Split" \rightarrow "Random Partitioning". Then choose the "Training set percentage" and the column for the sampling as shown below:

File Felt	Data Tanat	And And A	an Chablet	Diet 1/-1-			
File Edit	Data Transforma	Analyti	cs statistics	Plot Help			
IMPORT	Normalizers	•					
IMPORT	Data Manipulatio	on 🕨					
	Split	Kennard	d-Stone				
	Variable Selectio	n 🔸 Randon	n Partitioning				
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)
User Heade	r User Row ID	Density	BodyFat	Age	Weight	Height	Neck
1		1.0708000	12.3000000	23.0000000	154.2500000	67.7500000	36.2000000
2		1.0853000	6.1000000	22.0000000	173.2500000	72.2500000	38.5000000
3		1.0414000	25.3000000	22.0000000	154.0000000	66.2500000	34.0000000
4		1.0751000	10.4000000	26.0000000	184.7500000	72.2500000	37.4000000
5		1.0340000	28.7000000	24.0000000	184.2500000	71.2500000	34.4000000
6		1.0502000	20.9000000	24.0000000	210.2500000	74.7500000	39.0000000
7		1.0549000	19.2000000	26.0000000	181.0000000	69.7500000	36.4000000
8		1.0704000	12.4000000	25.0000000	176.0000000	72.5000000	37.8000000
9		1.0900000	4.1000000	25.0000000	191.0000000	74.000000	38.1000000
10		1.0722000	11.7000000	23.0000000	198.2500000	73.5000000	42.1000000
11		1.0830000	7.1000000	26.0000000	186.2500000	74.5000000	38.5000000
12		1.0812000	7.8000000	27.0000000	216.0000000	76.000000	39.4000000
13		1.0513000	20.8000000	32.0000000	180.5000000	69.5000000	38.4000000
14		1.0505000	21.2000000	30.0000000	205.2500000	71.2500000	39.4000000
15		1.0484000	22.1000000	35.0000000	187.7500000	69.5000000	40.5000000
16		1.0512000	20.9000000	35.0000000	162.7500000	66.0000000	36.4000000
17		1.0333000	29.0000000	34.0000000	195.7500000	71.0000000	38.9000000
18		1.0468000	22.9000000	32.0000000	209.2500000	71.0000000	42.1000000
19		1.0622000	16.0000000	28.0000000	183.7500000	67.7500000	38.0000000
20		1.0610000	16.5000000	33.0000000	211.7500000	73.5000000	40.0000000
21		1.0551000	19.1000000	28.0000000	179.0000000	68.0000000	39.1000000
	<()			
IPORT TR	AIN_TEST_SPLIT	+					

The results will appear on the output spreadsheet.

																	-	ø ×
File Edit D	ata Transforma	ition Analyti	cs Statistics	Plot Help														
IMPORT	TRAN_TEST_SPU																	
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)	Col		Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest	Abd	User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest
1		1.0708000	12.3000000	23.0000000	154.2500000	67.7500000	36.2000000	93.1000000	85.2	1		1.0708000	12.3000000	23.0000000	154.2500000	67.7500000	36.2000000	93.1000000
2		1.0853000	6.1000000	22.0000000	173.2500000	72.2500000	38.5000000	93.6000000	83.0	2		1.0853000	6.1000000	22.0000000	173.2500000	72.2500000	38.5000000	93.6000000
3		1.0414000	25.3000000	22.0000000	154.0000000	66.2500000	34.0000000	95.8000000	87.5	3		1.0414000	25.3000000	22.0000000	154.0000000	66.2500000	34.0000000	95.8000000
4		1.0751000	10.4000000	26.0000000	184.7500000	72.2500000	37.4000000	101.8000000	86.4	4		1.0704000	12.4000000	25.0000000	176.0000000	72.5000000	37.8000000	99.6000000
5		1.0340000	28.7000000	24.0000000	184.2500000	71.2500000	34.4000000	97.3000000	100	5		1.0900000	4.1000000	25.0000000	191.0000000	74.0000000	38.1000000	100.9000000
6		1.0502000	20.9000000	24.0000000	210.2500000	74.7500000	39.0000000	104.5000000	94.4	6		1.0722000	11.7000000	23.0000000	198.2500000	73.5000000	42.1000000	99.6000000
7		1.0549000	19.2000000	26.0000000	181.0000000	69.7500000	36.4000000	105.1000000	90.7	7		1.0830000	7.1000000	26.000000	186.2500000	74.5000000	38.5000000	101.5000000
8		1.0704000	12.4000000	25.0000000	176.0000000	72.5000000	37.8000000	99.6000000	88.5	8		1.0812000	7.8000000	27.000000	216.0000000	76.0000000	39.4000000	103.6000000
9		1.0900000	4.1000000	25.0000000	191.0000000	74.0000000	38.1000000	100.9000000	82.5	9		1.0513000	20.8000000	32.0000000	180.5000000	69.5000000	38.4000000	102.0000000
10		1.0722000	11.7000000	23.0000000	198.2500000	73.5000000	42.1000000	99.6000000	3.88	10		1.0505000	21.2000000	30.000000	205.2500000	71.2500000	39.4000000	104.1000000
11		1.0830000	7.1000000	26.000000	186.2500000	74.5000000	38.5000000	101.5000000	83.£	11		1.0484000	22.1000000	35.0000000	187.7500000	69.5000000	40.5000000	101.3000000
12		1.0812000	7.8000000	27.0000000	216.0000000	76.0000000	39.4000000	103.6000000	90.5	12		1.0512000	20.9000000	35.0000000	162.7500000	66.0000000	36.4000000	99.1000000
13		1.0513000	20.8000000	32.0000000	180.5000000	69.5000000	38.4000000	102.0000000	91.£	13		1.0333000	29.000000	34.000000	195.7500000	71.0000000	38.9000000	101.9000000
14		1.0505000	21.2000000	30.0000000	205.2500000	71.2500000	39.4000000	104.1000000	101	14		1.0468000	22.9000000	32.0000000	209.2500000	71.0000000	42.1000000	107.6000000
15		1.0484000	22.1000000	35.0000000	187.7500000	69.5000000	40.5000000	101.3000000	96.4	15		1.0622000	16.0000000	28.000000	183.7500000	67.7500000	38.0000000	106.8000000
16		1.0512000	20.9000000	35.0000000	162.7500000	66.0000000	36.4000000	99.1000000	92.8	16		1.0551000	19.1000000	28.000000	179.0000000	68.0000000	39.1000000	103.3000000
17		1.0333000	29.0000000	34.0000000	195.7500000	71.0000000	38.9000000	101.9000000	96.4	17		1.0631000	15.6000000	31.0000000	140.2500000	68.2500000	33.9000000	86.0000000
18		1.0468000	22.9000000	32.0000000	209.2500000	71.0000000	42.1000000	107.6000000	97.5	18		1.0584000	17.7000000	32.0000000	148.7500000	70.0000000	35.5000000	86.7000000
19		1.0622000	16.0000000	28.0000000	183.7500000	67.7500000	38.0000000	106.8000000	89.6	19		1.0911000	3.7000000	27.0000000	159.2500000	71.5000000	35.7000000	89.6000000
20		1.0610000	16.5000000	33.0000000	211.7500000	73.5000000	40.0000000	106.2000000	100	20		1.0910000	3.7000000	27.0000000	133.2500000	64.7500000	36.4000000	93.5000000
21		1.0551000	19.1000000	28.0000000	179.0000000	68.0000000	39.1000000	103.3000000	95.S	21		1.0790000	8.8000000	29.0000000	160.7500000	69.0000000	36.7000000	97.4000000
IMPORT TRAIN	N_TEST_SPLIT	•																>

Step 4: Normalize the training set

Create a new tab by pressing the "+" button on the bottom of the page with the name "NORMALIZE_TRAIN_SET".

Import data into the input spreadsheet of the "NORMALIZE_TRAIN_SET" tab the train set from the output of the "TRAIN_TEST_SPLIT" tab by right-clicking on the input spreadsheet and then choosing "Import from SpreadSheet". From the available Select input tab options choose "TRAIN_TEST_SPLIT: Training Set".

																	-	0)	<
File Edit D	ata Transforma	ition Analyti	cs Statistics	Plot Help															
IMPORT	TRAIN_TEST_SPU	T NORMALIZE F	IAIN SET																
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)	Col9 (D)	Co		Col1	Col2	Col3	Col4	Col5	Col6	Col7	
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest	Abdomen	Hip	User Header	User Row ID							Â
1		1.0708000	12.3000000	23.0000000	154.2500000	67.7500000	36.2000000	93.1000000	85.2000000	94.	1								
2		1.0853000	6.1000000	22.0000000	173.2500000	72.2500000	38.5000000	93.6000000	83.0000000	98.	2								
3		1.0414000	25.3000000	22.0000000	154.0000000	66.2500000	34.0000000	95.8000000	87.9000000	99.	3								
4		1.0704000	12.4000000	25.0000000	176.0000000	72.5000000	37.8000000	99.6000000	88.5000000	97.	4								
5		1.0900000	4.1000000	25.0000000	191.0000000	74.0000000	38.1000000	100.9000000	82.5000000	99.	5								
6		1.0722000	11.7000000	23.0000000	198.2500000	73.5000000	42.1000000	99.6000000	88.6000000	10·	6								
7		1.0830000	7.1000000	26.0000000	186.2500000	74.5000000	38.5000000	101.5000000	83.6000000	98.	7								
8		1.0812000	7.8000000	27.0000000	216.0000000	76.0000000	39.4000000	103.6000000	90.9000000	10	8								
9		1.0513000	20.8000000	32.0000000	180.5000000	69.5000000	38.4000000	102.0000000	91.6000000	10	9								
10		1.0505000	21.2000000	30.0000000	205.2500000	71.2500000	39.4000000	104.1000000	101.8000000	10;	10								
11		1.0484000	22.1000000	35.0000000	187.7500000	69.5000000	40.5000000	101.3000000	96.4000000	10	11								
12		1.0512000	20.9000000	35.0000000	162.7500000	66.0000000	36.4000000	99.1000000	92.8000000	99.	12								
13		1.0333000	29.000000	34.0000000	195.7500000	71.0000000	38.9000000	101.9000000	96.4000000	10	13								
14		1.0468000	22.9000000	32.0000000	209.2500000	71.0000000	42.1000000	107.6000000	97.5000000	10	14								
15		1.0622000	16.0000000	28.0000000	183.7500000	67.7500000	38.0000000	106.8000000	89.6000000	10.	15								
16		1.0551000	19.1000000	28.0000000	179.0000000	68.0000000	39.1000000	103.3000000	95.9000000	10·	16								
17		1.0631000	15.6000000	31.0000000	140.2500000	68.2500000	33.9000000	86.0000000	76.4000000	94.	17								
18		1.0584000	17.7000000	32.0000000	148.7500000	70.0000000	35.5000000	86.7000000	80.0000000	93.	18								
19		1.0911000	3.7000000	27.0000000	159.2500000	71.5000000	35.7000000	89.6000000	79.7000000	96.	19								
20		1.0910000	3.7000000	27.0000000	133.2500000	64.7500000	36.4000000	93.5000000	73.9000000	88.	20								
21		1.0790000	8.8000000	29.0000000	160.7500000	69.0000000	36.7000000	97.4000000	83.5000000	98.	21								~
IMPORT TRAIN	TEST SPLIT	NORMALIZE T	RAIN SET +																>

Normalize the data using Z-score by browsing: "Data Transformation" \rightarrow "Normalizers" \rightarrow "Z-Score". Then select all columns except "BodyFat" and click "Execute".

File Edit D	ata Transforma	ntion Analyt	ics Statistics	Plot Help			
IMPORT	ormalizers	Z Score					
	ata Manipulatio	Min-M	ax				
V	mable Selectio	n →					
		_					
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck
1		1.0708000	12.3000000	23.0000000	154.2500000	67.7500000	36.2000000
2		1.0853000	6.1000000	22.0000000	173.2500000	72.2500000	38.5000000
3		1.0414000	25.3000000	22.0000000	154.0000000	66.2500000	34.000000
4		1.0704000	12.4000000	25.0000000	176.0000000	72.5000000	37.8000000
5		1.0900000	4.1000000	25.0000000	191.0000000	74.0000000	38.1000000
6		1.0722000	11.7000000	23.000000	198.2500000	73.5000000	42.1000000
7		1.0830000	7.1000000	26.0000000	186.2500000	74.5000000	38.5000000
8		1.0812000	7.8000000	27.0000000	216.0000000	76.0000000	39.4000000
9		1.0513000	20.8000000	32.0000000	180.5000000	69.5000000	38.4000000
10		1.0505000	21.2000000	30.0000000	205.2500000	71.2500000	39.4000000
11		1.0484000	22.1000000	35.0000000	187.7500000	69.5000000	40.5000000
12		1.0512000	20.900000	35.0000000	105 7500000	66.0000000	36,4000000
14		1.0353000	23,0000000	32,0000000	209.2500000	71.0000000	42 1000000
15		1.0622000	16,0000000	28,0000000	183,7500000	67,7500000	38,000000
16		1.0551000	19 1000000	28,0000000	179,0000000	68,0000000	39 1000000
17		1.0631000	15.6000000	31.0000000	140.2500000	68,2500000	33,9000000
18		1.0584000	17,7000000	32.0000000	148,7500000	70.0000000	35.5000000
19		1.0911000	3.7000000	27.0000000	159.2500000	71.5000000	35.7000000
20		1.0910000	3.7000000	27.0000000	133.2500000	64.7500000	36.4000000
21		1.0790000	8.8000000	29.0000000	160.7500000	69.0000000	36.7000000
	<(-					

ile Edit Di	ata Transforma	ition Analyti	cs Statistics	Plot Help														, 0
	TRAIN_TEST_SPU	T NORWAL 25, TR	IAN SET															
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)	Col9 (D)	Co		Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)
Jser Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest	Abdomen	Hip	User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck
1		1.0708000	12.3000000	23.0000000	154.2500000	67.7500000	36.2000000	93.1000000	85.2000000	94.	1		0.8529956	12.3000000	-1.7225084	-0.8604453	-0.5757451	-0.7801497
2		1.0853000	6.1000000	22.0000000	173.2500000	72.2500000	38.5000000	93.6000000	83.0000000	98.	2		1.6149861	6.1000000	-1.7995809	-0.2182566	0.5630251	0.1666149
3		1.0414000	25.3000000	22.0000000	154.0000000	66.2500000	34.000000	95.8000000	87.9000000	99.	3		-0.6920058	25.3000000	-1.7995809	-0.8688952	-0.9553352	-1.685750
4		1.0704000	12.4000000	25.0000000	176.0000000	72.5000000	37.8000000	99.6000000	88.5000000	97.	4		0.8319752	12.4000000	-1.5683635	-0.1253082	0.6262902	-0.121530
5		1.0900000	4.1000000	25.0000000	191.0000000	74.0000000	38.1000000	100.9000000	82.5000000	99.	5		1.8619762	4.1000000	-1.5683635	0.3816829	1.0058802	0.0019602
6		1.0722000	11.7000000	23.0000000	198.2500000	73.5000000	42.1000000	99.6000000	88.6000000	10-	6		0.9265671	11.7000000	-1.7225084	0.6267287	0.8793502	1.6485072
7		1.0830000	7.1000000	26.0000000	186.2500000	74.5000000	38.5000000	101.5000000	83.6000000	98.	7		1.4941187	7.1000000	-1.4912910	0.2211358	1.1324103	0.1666149
8		1.0812000	7.8000000	27.0000000	216.0000000	76.0000000	39.4000000	103.6000000	90.9000000	10	8		1.3995267	7.8000000	-1.4142186	1.2266682	1.5120004	0.5370880
9		1.0513000	20.8000000	32.0000000	180.5000000	69.5000000	38.4000000	102.0000000	91.6000000	10.	9		-0.1717502	20.8000000	-1.0288563	0.0267892	-0.1328900	0.1254512
10		1.0505000	21.2000000	30.0000000	205.2500000	71.2500000	39.4000000	104.1000000	101.8000000	10	10		-0.2137911	21.2000000	-1.1830012	0.8633245	0.3099651	0.5370880
11		1.0484000	22.1000000	35.000000	187.7500000	69.5000000	40.5000000	101.3000000	96.4000000	10	11		-0.3241483	22.1000000	-0.7976389	0.2718349	-0.1328900	0.9898884
12		1.0512000	20.9000000	35.0000000	162.7500000	66.0000000	36.4000000	99.1000000	92.8000000	99.	12		-0.1770053	20.9000000	-0.7976389	-0.5731503	-1.0186002	-0.697822
13		1.0333000	29.000000	34.0000000	195.7500000	71.0000000	38.9000000	101.9000000	96.4000000	10.	13		-1.1176695	29.0000000	-0.8747113	0.5422301	0.2467001	0.3312696
14		1.0468000	22.9000000	32.0000000	209.2500000	71.0000000	42.1000000	107.6000000	97.5000000	10	14		-0.4082301	22.9000000	-1.0288563	0.9985222	0.2467001	1.6485072
15		1.0622000	16.0000000	28.0000000	183.7500000	67.7500000	38.0000000	106.8000000	89.6000000	10:	15		0.4010564	16.0000000	-1.3371461	0.1366372	-0.5757451	-0.039203
16		1.0551000	19.1000000	28.0000000	179.0000000	68.0000000	39.1000000	103.3000000	95.9000000	10-	16		0.0279438	19.1000000	-1.3371461	-0.0239100	-0.5124801	0.4135969
17		1.0631000	15.6000000	31.0000000	140.2500000	68.2500000	33.9000000	86.0000000	76.4000000	94.	17		0.4483524	15.6000000	-1.1059287	-1.3336370	-0.4492151	-1.726914
18		1.0584000	17.7000000	32.0000000	148.7500000	70.0000000	35.5000000	86.7000000	80.0000000	93.	18		0.2013624	17.7000000	-1.0288563	-1.0463421	-0.0063600	-1.068295
19		1.0911000	3.7000000	27.0000000	159.2500000	71.5000000	35.7000000	89.6000000	79.7000000	96.	19		1.9197823	3.7000000	-1.4142186	-0.6914483	0.3732301	-0.985968
20		1.0910000	3.7000000	27.0000000	133.2500000	64.7500000	36.4000000	93.5000000	73.9000000	88.	20		1.9145272	3.7000000	-1.4142186	-1.5702329	-1.3349253	-0.697822
		1 0700000	0.000000	20,0000000	160 7500000	60,0000000	126 700000	07 4000000	0.0000000	100	24		1 2020144	0.000000	1 2600727	0.6407402	0.0504000	0.5742213

Step 5: Normalize the test set

Create a new tab by pressing the "+" button on the bottom of the page with the name "NORMALIZE_TEST_SET".

Import data into the input spreadsheet of the "NORMALIZE_TEST_SET" tab the test set from the output of the "TRAIN_TEST_SPLIT" tab by right-clicking on the input spreadsheet and then choosing "Import from SpreadSheet". From the available Select input tab options choose "TRAIN_TEST_SPLIT: Test Set".

																	-	0	×
File Edit D	lata Transforma	tion Analyti	cs Statistics	Plot Help															
IMPORT	TRAIN_TEST_SPU		IAIN_SET EST_SET																
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)	ĥ		Col1	Col2	Col3	Col4	Col5	Col6	Col7	Co	8
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest		User Header	User Row ID								â
		1.0751000	10.4000000	26.0000000	184.7500000	72.2500000	37.4000000	101.8000000		1									
2		1.0340000	28.7000000	24.0000000	184.2500000	71.2500000	34.4000000	97.3000000		2									
3		1.0502000	20.9000000	24.0000000	210.2500000	74.7500000	39.0000000	104.5000000		3									
4		1.0549000	19.2000000	26.0000000	181.0000000	69.7500000	36.4000000	105.1000000		4									
5		1.0610000	16.5000000	33.0000000	211.7500000	73.5000000	40.0000000	106.2000000		5									
6		1.0640000	15.2000000	28.0000000	200.5000000	69.7500000	41.3000000	111.4000000		6									
7		1.0668000	14.0000000	28.0000000	151.2500000	67.7500000	34.5000000	90.2000000		7									
8		1.0811000	7.9000000	34.0000000	131.5000000	67.5000000	36.2000000	88.6000000		8									
9		1.0468000	22.9000000	31.0000000	148.0000000	67.5000000	38.8000000	97.4000000		9									
10		1.0719000	11.8000000	27.0000000	168.0000000	71.2500000	38.1000000	93.0000000		10									
11		1.0438000	24.2000000	40.0000000	202.2500000	70.0000000	38.5000000	106.5000000		11									
12		1.0346000	28.4000000	50.0000000	196.7500000	68.2500000	42.1000000	105.6000000		12									
13		1.0217000	34.5000000	45.0000000	262.7500000	68.7500000	43.2000000	128.3000000		13									
14		1.0665000	5.6000000	39.0000000	148.5000000	71.2500000	34.6000000	89.8000000		14									
15		1.0678000	13.6000000	45.0000000	135.7500000	68.5000000	32.8000000	92.3000000		15									_
16		1.0756000	10.2000000	47.0000000	158.2500000	72.2500000	34.9000000	90.2000000		16									
17		1.0848000	6.3000000	49.0000000	152.7500000	73.5000000	35.1000000	93.3000000		17									
18		1.0906000	3.9000000	42.0000000	136.2500000	67.5000000	37.8000000	87.6000000		18									
19		1.0524000	20.4000000	58.0000000	181.5000000	68.0000000	39.1000000	100.0000000		19									
20		1.0356000	28.000000	62.0000000	201.2500000	69.5000000	40.5000000	111.5000000		20									
21		1.0403000	25.8000000	61.0000000	178.0000000	67.0000000	37.4000000	105.3000000	~ ~	21									~
IMPORT TRAIN	TEST SDUT			PMALIZE TEST	SET +														

Normalize the test set using the existing normalizer of the training set by browsing: "Analytics" \rightarrow "Existing Model Utilization" \rightarrow "Model (from Tab:) NORMALIZE_TRAIN_SET".

IMPORT	TRAIN_TEST_SPLI	Regress Classific Cluster Anoma Existing	sion cation ing ly Detection Model Utilizat)) ion			
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	1
		1.0751000	10.4000000	26.000000	184.7500000	72.2500000	
2		1.0340000	28.7000000	24.000000	184.2500000	71.2500000	
3		1.0502000	20.9000000	24.000000	210.2500000	74.7500000	
4		1.0549000	19.2000000	26.000000	181.0000000	69.7500000	
5		1.0610000	16.5000000	33.0000000	211.7500000	73.5000000	
6		1.0640000	15.2000000	28.000000	200.5000000	69.7500000	
7		1.0668000	14.0000000	28.000000	151.2500000	67.7500000	
8		1.0811000	7.9000000	34.000000	131.5000000	67.5000000	
9		1.0468000	22.9000000	31.0000000	148.0000000	67.5000000	
10		1.0719000	11.8000000	27.000000	168.0000000	71.2500000	
11		1.0438000	24.2000000	40.0000000	202.2500000	70.0000000	
12		1.0346000	28.4000000	50.0000000	196.7500000	68.2500000	
13		1.0217000	34.5000000	45.000000	262.7500000	68.7500000	
14		1.0665000	5.6000000	39.000000	148.5000000	71.2500000	
15		1.0678000	13.6000000	45.000000	135.7500000	68.5000000	
16		1.0756000	10.2000000	47.000000	158.2500000	72.2500000	
17		1.0848000	6.3000000	49.000000	152.7500000	73.5000000	
18		1.0906000	3.9000000	42.0000000	136.2500000	67.5000000	
19		1.0524000	20.4000000	58.0000000	181.5000000	68.0000000	
20		1.0356000	28.0000000	62.0000000	201.2500000	69.5000000	
21		1.0403000	25.8000000	61.0000000	178.0000000	67.0000000	

Type Z Score Normalizer Model escription todel Input Header -> Datatype Density -> Double Age -> Double Weight -> Double Height -> Double Neck -> Double Neck -> Double Abdomen -> Double		Model	(from Tab:)NORM	ALIZE_TR 👻	
Indel Input Indel Input Header -> Datatype Density -> Double Age -> Double Weight -> Double Height -> Double Neck -> Double Chest -> Double Addomen -> Double		Туре	Z Score Norm	alizer Model	
Iodel Input Header -> Datatype Density -> Double Age -> Double Weight -> Double Height -> Double Neck -> Double Chest -> Double Abdomen -> Double	escription				
todel Input Header -> Datatype Density -> Double Age -> Double Weight -> Double Height -> Double Neck -> Double Chest -> Double Abdomen -> Double					
Header -> Datatype Density -> Double Age -> Double Weight -> Double Height -> Double Neck -> Double Chest -> Double Abdomen -> Double	lodel Input				
Density -> Double Age -> Double Weight -> Double Height -> Double Neck -> Double Chest -> Double Abdomen -> Double	Header ->	Datatype			
Age -> Double Weight -> Double Height -> Double Neck -> Double Chest -> Double Adomen -> Double	Density ->	Double			
Weight -> Double Height -> Double Neck -> Double Chest -> Double Adomen -> Double	Age -> Doub	ole			
Height -> Double Neck -> Double Chest -> Double Abdomen -> Double	Weight ->	Double			
Neck -> Double Chest -> Double Abdomen -> Double	Height ->	Double			
Chest -> Double Abdomen -> Double	Neck ->	Double			
Abdomen -> Double	Chest ->	Double			
	Abdomen ->	Double			
Hip -> Double	Hip -> Doub	ole			
Thick Dauble	Thigh	Daubla			
Transfer Column(s) to Output	Transfer Co	olumn(s) to (Dutput		

																	0 ×
File Edit D	lata Transforma	tion Analyti	cs Statistics	Plot Help													
IMPORT	TRAIN_TEST_SPLIT		NAIN_SET 1851,581														Ŷ
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)		Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest 🎧	User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest
1		1.0751000	10.4000000	26.0000000	184.7500000	72.2500000	37.4000000	101.8000000	1		1.0789652	10.4000000	-1.4912910	0.1704366	0.5630251	-0.2861856	0.0773428
2		1.0340000	28.7000000	24.0000000	184.2500000	71.2500000	34.4000000	97.3000000	2		-1.0808837	28.7000000	-1.6454360	0.1535369	0.3099651	-1.5210958	-0.4591990
3		1.0502000	20.9000000	24.0000000	210.2500000	74.7500000	39.0000000	104.5000000	3		-0.2295564	20.9000000	-1.6454360	1.0323216	1.1956753	0.3724333	0.3992679
4		1.0549000	19.2000000	26.0000000	181.0000000	69.7500000	36.4000000	105.1000000	4		0.0174336	19.2000000	-1.4912910	0.0436889	-0.0696250	-0.6978223	0.4708068
5		1.0610000	16.5000000	33.0000000	211.7500000	73.5000000	40.0000000	106.2000000	5		0.3379951	16.5000000	-0.9517838	1.0830207	0.8793502	0.7840700	0.6019614
6		1.0640000	15.2000000	28.0000000	200.5000000	69.7500000	41.3000000	111.4000000	6		0.4956483	15.2000000	-1.3371461	0.7027773	-0.0696250	1.3191978	1.2219653
7		1.0668000	14.0000000	28.0000000	151.2500000	67.7500000	34.5000000	90.2000000	7		0.6427913	14.0000000	-1.3371461	-0.9618435	-0.5757451	-1.4799322	-1.3057428
8		1.0811000	7.9000000	34.0000000	131.5000000	67.5000000	36.2000000	88.6000000	8		1.3942716	7.9000000	-0.8747113	-1.6293819	-0.6390101	-0.7801497	-1.4965132
9		1.0468000	22.9000000	31.0000000	148.0000000	67.5000000	38.8000000	97.4000000	9		-0.4082301	22.9000000	-1.1059287	-1.0716916	-0.6390101	0.2901059	-0.4472759
10		1.0719000	11.8000000	27.0000000	168.0000000	71.2500000	38.1000000	93.0000000	10		0.9108018	11.8000000	-1.4142186	-0.3957034	0.3099651	0.0019602	-0.9718946
11		1.0438000	24.2000000	40.0000000	202.2500000	70.0000000	38.5000000	106.5000000	11		-0.5658833	24.2000000	-0.4122765	0.7619263	-0.0063600	0.1666149	0.6377309
12		1.0346000	28.4000000	50.0000000	196.7500000	68.2500000	42.1000000	105.6000000	12		-1.0493531	28.4000000	0.3584481	0.5760295	-0.4492151	1.6485072	0.5304225
13		1.0217000	34.5000000	45.0000000	262.7500000	68.7500000	43.2000000	128.3000000	13		-1.7272619	34.5000000	-0.0269142	2.8067905	-0.3226850	2.1013077	3.2369779
14		1.0665000	5.6000000	39.0000000	148.5000000	71.2500000	34.6000000	89.8000000	14		0.6270260	5.6000000	-0.4893490	-1.0547919	0.3099651	-1.4387685	-1.3534354
15		1.0678000	13.6000000	45.0000000	135.7500000	68.5000000	32.8000000	92.3000000	15		0.6953424	13.6000000	-0.0269142	-1.4857344	-0.3859501	-2.1797147	-1.0553566
16		1.0756000	10.2000000	47.0000000	158.2500000	72.2500000	34.9000000	90.2000000	16		1.1052408	10.2000000	0.1272307	-0.7252477	0.5630251	-1.3152775	-1.3057428
17		1.0848000	6.3000000	49.0000000	152.7500000	73.5000000	35.1000000	93.3000000	17		1.5887106	6.3000000	0.2813757	-0.9111444	0.8793502	-1.2329501	-0.9361251
18		1.0906000	3.9000000	42.0000000	136.2500000	67.5000000	37.8000000	87.600000	18		1.8935068	3.9000000	-0.2581316	-1.4688347	-0.6390101	-0.1215309	-1.6157448
19		1.0524000	20.4000000	58.0000000	181.5000000	68.0000000	39.1000000	100.0000000	19		-0.1139441	20.4000000	0.9750279	0.0605886	-0.5124801	0.4135969	-0.1372740
20		1.0356000	28.0000000	62.0000000	201.2500000	69.5000000	40.5000000	111.5000000	20		-0.9968020	28.0000000	1.2833177	0.7281269	-0.1328900	0.9898884	1.2338885
21		1.0403000	25.8000000	61.0000000	178.0000000	67.0000000	37.4000000	105.3000000	21		-0.7498120	25.8000000	1.2062453	-0.0577094	-0.7655401	-0.2861856	0.4946531 🔍
IMPORT TRAIN	I< ⊂ I_TEST_SPLIT I	NORMALIZE_T	RAIN_SET NO	RMALIZE_TEST	SET +				X								

Step 6: Train the model

Create a new tab by pressing the "+" button on the bottom of the page with the name "TRAIN_MODEL(.fit)". Import data into the input spreadsheet of the "TRAIN_MODEL(.fit)" tab from the output of the "NORMALIZE_TRAIN_SET" tab by right-clicking on the input spreadsheet and then choosing "Import from SpreadSheet".

																		-	0	×
File Edit D	ata Transforma	tion Analyti	cs Statistics	Plot Help																
IMPORT	TRAIN_TEST_SPUT	NORIVALIZE JI Norivalize ji	HAN SET TRAIN 151, set	MODEL(AK)																
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)			Col1	Col2	Col3	Col4	Col5	Col6	Col7	Col8	Col9	,
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest	Â.	User Header	User Row ID									<u>^</u> î
		0.8529956	12.3000000	-1.7225084	-0.8604453	-0.5757451	-0.7801497	-0.9599714	- II	1										
2		1.6149861	6.1000000	-1.7995809	-0.2182566	0.5630251	0.1666149	-0.9003557		2										U
3		-0.6920058	25.3000000	-1.7995809	-0.8688952	-0.9553352	-1.6857505	-0.6380463	-	3										
4		0.8319752	12.4000000	-1.5683635	-0.1253082	0.6262902	-0.1215309	-0.1849666		4										
5		1.8619762	4.1000000	-1.5683635	0.3816829	1.0058802	0.0019602	-0.0299656		6										
6		0.9265671	11.7000000	-1.7225084	0.6267287	0.8793502	1.6485072	-0.1849666	.	7										
7		1.4941187	7.1000000	-1.4912910	0.2211358	1.1324103	0.1666149	0.0415733		8										
8		1.3995267	7.8000000	-1.4142186	1.2266682	1.5120004	0.5370880	0.2919595		9										
9		-0.1717502	20.8000000	-1.0288563	0.0267892	-0.1328900	0.1254512	0.1011891		10										
10		-0.2137911	21.2000000	-1.1830012	0.8633245	0.3099651	0.5370880	0.3515753	t l	11										
11		-0.3241483	22.1000000	-0.7976389	0.2718349	-0.1328900	0.9898884	0.0177270	Ċ.	12										
12		-0.1770053	20.9000000	-0.7976389	-0.5731503	-1.0186002	-0.6978223	-0.2445823	.	13										
13		-1.1176695	29.0000000	-0.8747113	0.5422301	0.2467001	0.3312696	0.0892659	t l	14										
14		-0.4082301	22.9000000	-1.0288563	0.9985222	0.2467001	1.6485072	0.7688856	(15										
15		0.4010564	16.0000000	-1.3371461	0.1366372	-0.5757451	-0.0392035	0.6735003	.	10										
16		0.0279438	19.1000000	-1.3371461	-0.0239100	-0.5124801	0.4135969	0.2561900	t l	18										
17		0.4483524	15,6000000	-1.1059287	-1.3336370	-0.4492151	-1.7269142	-1.8065152		19										
18		0.2013624	17,7000000	-1.0288563	-1.0463421	-0.0063600	-1.0682954	-1.7230531		20									-	
19		1.9197823	3,7000000	-1.4142186	-0.6914483	0.3732301	-0.9859681	-1.3772817		21										_
20		1.9145272	3 7000000	-1.4142186	-1 5702329	-1 3349253	-0.6978223	-0.9122788		22										
20	< [1.91-9212	10.000000	1.41.42.100	1.01 02.32.9	1.55-192.33	0.0570225	0.7122700		23	<									~
	men en la																			

Use the k Nearest Neighbors (kNN) method to train and fit the model by browsing: "Analytics" \rightarrow "Regression" \rightarrow "k Nearest Neighbors (kNN)" and set the "Target Column" as the column corresponding to "BodyFat" and the "Number of Neighbors" to 5.

File Edit Da	ata Transforma	tion Analyti	cs Statistics	Plot He	lp					
IMPORT	TRAIN_TEST_SPUT	Regress Classific Clusteri Anomal Existing	ion ation ng y Detection Model Utilizati	k-Ne Fully Radi Line XGB Rand	earest Neighbors r Connected Neur al Basis Function ar SGD oost dom Forest	(kNN) al Network Network				
	Col1	Col2 (D)	Col3 (D)	Col4 (D) Col5 (D)	Col6 (D)	Col7 (D)			
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	ANN Regression Model		>
1		0.8529956	12.3000000	-1.7225084	-0.8604453	-0.5757451	-0.7801497			, i
2		1.6149861	6.1000000	-1.7995809	-0.2182566	0.5630251	0.1666149			
3		-0.6920058	25.3000000	-1.7995809	-0.8688952	-0.9553352	-1.6857505	Target Column	Col3 BodyFat	
4		0.8319752	12.4000000	-1.5683635	-0.1253082	0.6262902	-0.1215309			
5		1.8619762	4.1000000	-1.5683635	0.3816829	1.0058802	0.0019602	Number of Neighbore		
6		0.9265671	11.7000000	-1.7225084	0.6267287	0.8793502	1.6485072	Number of Neighbors	5	
7		1.4941187	7.1000000	-1.4912910	0.2211358	1.1324103	0.1666149			
8		1.3995267	7.8000000	-1.4142186	1.2266682	1.5120004	0.5370880			
9		-0.1717502	20.8000000	-1.0288563	0.0267892	-0.1328900	0.1254512	Execut	te Cancel	
10		-0.2137911	21.2000000	-1.1830012	0.8633245	0.3099651	0.5370880			
11		-0.3241483	22.1000000	-0.7976389	0.2718349	-0.1328900	0.9898884	-		
12		-0.1770053	20.9000000	-0.7976389	-0.5731503	-1.0186002	-0.6978223			
13		-1.1176695	29.0000000	-0.8747113	0.5422301	0.2467001	0.3312696			
14		-0.4082301	22.9000000	-1.0288563	0.9985222	0.2467001	1.6485072			
15		0.4010564	16.0000000	-1.3371461	0.1366372	-0.5757451	-0.0392035			
16		0.0279438	19.1000000	-1.3371461	-0.0239100	-0.5124801	0.4135969			
17		0.4483524	15.6000000	-1.1059287	-1.3336370	-0.4492151	-1.7269142			
18		0.2013624	17.7000000	-1.0288563	-1.0463421	-0.0063600	-1.0682954			
19		1.9197823	3.7000000	-1.4142186	-0.6914483	0.3732301	-0.9859681			
20		1.9145272	3.7000000	-1.4142186	-1.5702329	-1.3349253	-0.6978223			

File Edit D	ata Transforma	ition Analyti	cs Statistics	Plot Help														-	0	×
IMPORT	TRAIN_TEST_SPL	NORMAUZE (T	AN SET TRAIN, EST, SET	MODEL(A)																
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)			Col1	Col2 (D)	Col3 (D)	Col4 (S)	Col5 (D)	Col6 (S)	Col7 (D)	Col8 (S)	Col9 (D)
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest	â	User Header	User Row ID	BodyFat	kNN Prediction	Closest NN1	Distance from	Closest NN2	Distance from	Closest NN3	Distance f	rom c
		0.8529956	12.3000000	-1.7225084	-0.8604453	-0.5757451	-0.7801497	-0.9599714		1		12.3000000	12.2966713	Entry 1	0E-7	Entry 113	0.2416378	Entry 21	0.2563247	E
2		1.6149861	6.1000000	-1.7995809	-0.2182566	0.5630251	0.1666149	-0.9003557		2		6.1000000	6.1470758	Entry 2	0E-7	Entry 107	0.2011506	Entry 19	0.2585959) E
3		-0.6920058	25.3000000	-1.7995809	-0.8688952	-0.9553352	-1.6857505	-0.6380463		3		25.3000000	25.2212809	Entry 3	0E-7	Entry 12	0.3686288	Entry 1	0.4269102	! E
4		0.8319752	12.4000000	-1.5683635	-0.1253082	0.6262902	-0.1215309	-0.1849666		4		12.4000000	12.3349552	Entry 4	0E-7	Entry 116	0.2116042	Entry 107	0.2376015	E
5		1.8619762	4.1000000	-1.5683635	0.3816829	1.0058802	0.0019602	-0.0299656		5		4.1000000	4.1758499	Entry 5	0E-7	Entry 7	0.2700779	Entry 107	0.3126455	í E
6		0.9265671	11.7000000	-1.7225084	0.6267287	0.8793502	1.6485072	-0.1849666		6		11.7000000	11.7075962	Entry 6	0E-7	Entry 8	0.2971078	Entry 7	0.3487918	\$ E
7		1.4941187	7.1000000	-1.4912910	0.2211358	1.1324103	0.1666149	0.0415733		7		7.1000000	7.1356214	Entry 7	0E-7	Entry 116	0.2262808	Entry 4	0.2409434	é E
8		1.3995267	7.8000000	-1.4142186	1.2266682	1.5120004	0.5370880	0.2919595		8		7.8000000	7.8215313	Entry 8	0E-7	Entry 6	0.2971078	Entry 5	0.3351049) E
9		-0.1717502	20.8000000	-1.0288563	0.0267892	-0.1328900	0.1254512	0.1011891		9		20.8000000	20.7592510	Entry 9	0E-7	Entry 129	0.1867059	Entry 128	0.2103977	E
10		-0.2137911	21,2000000	-1.1830012	0.8633245	0.3099651	0.5370880	0.3515753		10		21.2000000	21.2245922	Entry 10	0E-7	Entry 14	0.2285561	Entry 122	0.2648014	
11		-0.3241483	22,1000000	-0.7976389	0.2718349	-0.1328900	0.9898884	0.0177270		12		20.9000000	20.8914447	Entry 17	05-7	Entry 132	0.2203939	Entry 13	0.2002791	
12		-0.1770053	20,9000000	-0.7976389	-0.5731503	-1.0186002	-0.6978223	-0.2445823		13		29,0000000	28.9322117	Entry 13	0E-7	Entry 132	0.2744677	Entry 11	0.2882791	E
13		-1.1176695	29,0000000	-0.8747113	0.5422301	0.2467001	0.3312696	0.0892659		14		22.9000000	22.8604494	Entry 14	0E-7	Entry 10	0.2285561	Entry 125	0.2513103	5 E
14		-0.4092301	22 9000000	-1.0288563	0.9995222	0.2467001	1.6495072	0.7699856		15		16.0000000	16.0657213	Entry 15	0E-7	Entry 16	0.2810801	Entry 11	0.2920700) E
15		0.4010564	16.0000000	1 2271461	0.1266272	0.5757451	0.0202025	0.6735003	-	16		19.1000000	19.1124248	Entry 16	0E-7	Entry 9	0.2168155	Entry 15	0.2810801	I E
15		0.4010304	10.000000	1 2271461	0.0320100	0.5134901	0.0352053	0.0755005		17		15.6000000	15.5716198	Entry 17	0E-7	Entry 18	0.1965849	Entry 121	0.2580966	5 E
10		0.0279458	19.100000	-1.3371401	-0.0259100	-0.5124001	0.4155909	0.2561900		18		17.7000000	17.6916994	Entry 18	0E-7	Entry 17	0.1965849	Entry 121	0.2245329) E
1/		0.4483524	13.000000	-1.1039287	-1.5536370	-0.4492151	-1.7209142	1.8005152		19		3.7000000	3.7519244	Entry 19	0E-7	Entry 106	0.2030465	Entry 126	0.2060518) E
18		0.2013624	17.7000000	-1.0288563	-1.0463421	-0.0063600	-1.0682954	-1.7230531		20		3.7000000	3.7201249	Entry 20	0E-7	Entry 126	0.2859354	Entry 19	0.3291248	I E
19		1.919/823	3.7000000	-1.4142186	-0.6914483	0.3732301	-0.9859681	-1.3772817		21		8.8000000	8.7815776	Entry 21	0E-7	Entry 106	0.2465051	Entry 126	0.2512018	\$ E
20		1.9145272	3.7000000	-1.4142186	-1.5702329	-1.3349253	-0.6978223	-0.9122788		22		11.9000000	11.9023665	Entry 22	0E-7	Entry 116	0.6250973	Entry 7	0.6298949) E

Step 7: Validate the model

Create a new tab by pressing the "+" button on the bottom of the page with the name "VALIDATE_MODEL(.predict)".

Import data into the input spreadsheet of the "VALIDATE_MODEL(.predict)" tab from the output of the "NORMALIZE _TEST_SET" tab by right-clicking on the input spreadsheet and then choosing "Import from SpreadSheet".

																			- 0	×
File Edit D	ata Transforma	tion Analyti	cs Statistics	Plot Help																
IMPORT	TRAIN_TEST_SPLIT	NORMALIZE (*	AN SET TRAIN	,MODEL(fr()																
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)	Col9 (1 5		Col1	Col2	Col3	Col4	Col5	Col6	Col7	Col8	Col9
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest	Abdom		User Header	User Row ID								Â
1		1.0789652	10.4000000	-1.4912910	0.1704366	0.5630251	-0.2861856	0.0773428	-0.6090		1									
2		-1.0808837	28.7000000	-1.6454360	0.1535369	0.3099651	-1.5210958	-0.4591990	0.64588		2									
3		-0.2295564	20.9000000	-1.6454360	1.0323216	1.1956753	0.3724333	0.3992679	0.12913		3									
4		0.0174336	19.2000000	-1.4912910	0.0436889	-0.0696250	-0.6978223	0.4708068	-0.2122		4								-	
5		0.3379951	16.5000000	-0.9517838	1.0830207	0.8793502	0.7840700	0.6019614	0.69202		6									
6		0.4956483	15.2000000	-1.3371461	0.7027773	-0.0696250	1.3191978	1.2219653	0.53515		7									
7		0.6427913	14.0000000	-1.3371461	-0.9618435	-0.5757451	-1.4799322	-1.3057428	-1.5410		8									_
8		1.3942716	7.9000000	-0.8747113	-1.6293819	-0.6390101	-0.7801497	-1.4965132	-1.6979		9									
9		-0.4082301	22.9000000	-1.1059287	-1.0716916	-0.6390101	0.2901059	-0.4472759	-0.3968		10									
10		0.9108018	11.8000000	-1.4142186	-0.3957034	0.3099651	0.0019602	-0.9718946	-1.2826		11									
11		-0.5658833	24.2000000	-0.4122765	0.7619263	-0.0063600	0.1666149	0.6377309	0.72893		12									
12		-1.0493531	28.4000000	0.3584481	0.5760295	-0.4492151	1.6485072	0.5304225	0.53515		13									
13		-1.7272619	34.5000000	-0.0269142	2.8067905	-0.3226850	2.1013077	3.2369779	3.06351		14									
14		0.6270260	5.6000000	-0.4893490	-1.0547919	0.3099651	-1.4387685	-1.3534354	-1.2457		15									
15		0.6953424	13.6000000	-0.0269142	-1.4857344	-0.3859501	-2.1797147	-1.0553566	-0.8858		17									
16		1.1052408	10.2000000	0.1272307	+0.7252477	0.5630251	-1.3152775	-1.3057428	-0.5813		18									
17		1.5887106	6.3000000	0.2813757	-0.9111444	0.8793502	-1.2329501	-0.9361251	-1.2365		19									<u> </u>
	<		<u>.</u>		·	·		·	+	16		<								
IMPORT TRAIN	_TEST_SPLIT	NORMALIZE_T	RAIN_SET NO	RMALIZE_TEST	SET TRAIN_N	IODEL(.fit) VA	LIDATE_MODE	L(.predict) +												

To validate the model browse: "Analytics" \rightarrow "Existing Model Utilization". Then choose Model "(from Tab:) TRAIN_MODEL (.fit)". and transfer the "BodyFat" column in the output.

File	Edit	Data Transforma	tion Analyti	cs Statistics	Plot Help		
			Regress	sion			
IMP	ORT	TRAIN_TEST_SPU	Classific	cation	► 4		
			Clusteri	ing	•		
			Anoma	ly Detection	•		
			Existing	Model Utilizat	ion		
		C-14	C-12 (D)	C-17 (D)	C-14 (D)	C-15 (D)	6-16 /
Here	Handa	Coll	Col2 (D)	Cols (D)	COI4 (D)	Cols (D)	Cole (I
User	пеаце	r User Now ID	1.0700650	10 4000000	Age 1.4012010	0 1704266	0.562025
			1.0789032	20.7000000	1.4912910	0.1704500	0.303023
	2		-1.0808837	28.7000000	-1.0454300	0.1535369	0.309965
	3		-0.2295564	20.9000000	-1.6454360	1.0323216	1.1956/5
	4		0.01/4336	19.2000000	-1.4912910	0.0436889	-0.069625
	5		0.3379951	16.5000000	-0.9517838	1.0830207	0.879350
	6		0.4956483	15.2000000	-1.3371461	0.7027773	-0.06962
	7		0.6427913	14.0000000	-1.3371461	-0.9618435	-0.575745
	8		1.3942716	7.9000000	-0.8747113	-1.6293819	-0.639010
	9		-0.4082301	22.9000000	-1.1059287	-1.0716916	-0.639010
	10		0.9108018	11.8000000	-1.4142186	-0.3957034	0.309965
	11		-0.5658833	24.2000000	-0.4122765	0.7619263	-0.006360
	12		-1.0493531	28.4000000	0.3584481	0.5760295	-0.449215
			-1.7272619	34.5000000	-0.0269142	2.8067905	-0.322685
	13			-			
	13 14		0.6270260	5.6000000	-0.4893490	-1.0547919	0.309965
	13 14 15		0.6270260 0.6953424	5.6000000 13.6000000	-0.4893490 -0.0269142	-1.0547919 -1.4857344	-0.385950
	13 14 15 16		0.6270260 0.6953424 1.1052408	5.6000000 13.6000000 10.2000000	-0.4893490 -0.0269142 0.1272307	-1.0547919 -1.4857344 -0.7252477	-0.309965 -0.385950 0.563025

Model	(from Tab	:)TRAIN_MOD	DEL(👻
Type	kNN M	odel	
odel Input			
teader → Datatype Pensity → Double Weight → Double Veck → Double Veck → Double National Action Action National Action International Action Transfer Column(s) to Excluded Columns	Output		Included Columns
Col2 Density Col4 Age	$\hat{\Box}$	>>	Col3 BodyFat
Col5 Weight		>	
Col7 Neck		<	
COID CHEST		<<	
Col9 Abdomen Col10 Hip			

The predictions will appear on the output spreadsheet.

The cure of		Analyu		nov nep															
IMPORT	TRAIN_TEST_SPUT	NORMALIZE JE	AN, SET TRAIN, EST, SET MUDAT	JMODELL, fic)															
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)	Col9 (I		Col1	Col2 (D)	Col3 (S)	Col4 (D)	Col5 (S)	Col6 (D)	Col7 (S)	Col8 (D)	Col9
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest	Abdom	User Header	User Row ID	kNN Prediction	Closest NN1	Distance from	ⁿ Closest NN2	Distance from NN2	Closest NN3	Distance from	^m Closest
		1.0789652	10.4000000	-1.4912910	0.1704366	0.5630251	-0.2861856	0.0773428	-0.6090	1		9.3312024	Entry 107	0.1676399	Entry 4	0.2219115	Entry 116	0.2350152	Entry 2
2		-1.0808837	28.7000000	-1.6454360	0.1535369	0.3099651	-1.5210958	-0.4591990	0.64588	2		25.1974449	Entry 117	0.3516779	Entry 101	0.4301765	Entry 86	0.4308555	Entry 8
3		-0.2295564	20.9000000	-1.6454360	1.0323216	1.1956753	0.3724333	0.3992679	0.12913	3		21.9519381	Entry 10	0.2294060	Entry 114	0.2789554	Entry 6	0.3103474	Entry 1
4		0.0174336	19.2000000	-1.4912910	0.0436889	-0.0696250	-0.6978223	0.4708068	-0.2122	4		19.9563764	Entry 117	0.2260597	Entry 128	0.2333629	Entry 9	0.2394963	Entry 1
5		0.3379951	16.5000000	-0.9517838	1.0830207	0.8793502	0.7840700	0.6019614	0.69202	5		21.7408855	Entry 10	0.2132167	Entry 139	0.2689456	Entry 11	0.2902531	Entry 1
6		0.4956483	15.2000000	-1.3371461	0.7027773	-0.0696250	1.3191978	1.2219653	0.53515	6		20.7413738	Entry 123	0.2990883	Entry 125	0.3280152	Entry 14	0.3642761	Entry 1
7		0.6427913	14.0000000	-1.3371461	-0.9618435	-0.5757451	-1.4799322	-1.3057428	-1.5410	7		10.5655667	Entry 106	0.2276968	Entry 18	0.2392316	Entry 1	0.2475311	Entry 2
8		1.3942716	7.9000000	-0.8747113	-1.6293819	-0.6390101	-0.7801497	-1.4965132	-1.6979	8		9.1975497	Entry 121	0.2373282	Entry 36	0.2524254	Entry 20	0.2558688	Entry 3
9		-0.4082301	22.9000000	-1.1059287	-1.0716916	-0.6390101	0.2901059	-0.4472759	-0.3968	9		19.2633812	Entry 84	0.2662981	Entry 124	0.2760216	Entry 12	0.3058974	Entry 1
10		0.9108018	11,8000000	-1.4142186	-0.3957034	0.3099651	0.0019602	-0.9718946	-1.2826	10		10.7518509	Entry 2	0.2552910	Entry 4	0.3100214	Entry 113	0.31/4439	Entry 1
11		-0.5658833	24,2000000	-0.4122765	0.7619263	-0.0063600	0.1666149	0.6377309	0.72893	12		28.2789497	Entry 45	0.2569128	Entry 161	0.2940622	Entry 44	0.2973686	Entry 7
12		-1.0493531	28,4000000	0.3584481	0.5760295	-0.4492151	1.6485072	0.5304225	0.53515	13		30.9301278	Entry 25	0.5081436	Entry 143	0.6147704	Entry 180	0.7325640	Entry 1
13		-1 7272619	34 5000000	-0.0269142	2.8067905	-0.3226850	2 1013077	3 2369779	3.06351	14		13.4702913	Entry 142	0.1610765	Entry 155	0.2203273	Entry 18	0.2401367	Entry 8
14		0.6270260	5 6000000	-0.4893490	-1.0547919	0 3099651	-1.4387685	.1 3534354	12457	15		10.9296812	Entry 121	0.2692974	Entry 50	0.2829168	Entry 36	0.2904809	Entry 3
14		0.6052424	12 6000000	0.0360143	1 4057244	0.30550501	2 1707147	1.0553566	0.0050	16		11.7469717	Entry 155	0.2156831	Entry 97	0.2948418	Entry 36	0.2995778	Entry 1
15		1 1052409	10.2000000	0.1272207	0.7352477	0.5620251	1 215 2775	1 2057429	0.5013	17		13.8738429	Entry 47	0.4003459	Entry 91	0.4195432	Entry 154	0.4256256	Entry 8
15		1.1032408	10.2000000	0.1272307	-0.7252477	0.3630231	-1.3132773	-1.3037420	-0.3613	18		7.7430758	Entry 142	0.2812897	Entry 126	0.2912166	Entry 156	0.3335921	Entry 3
15		1 5007105	6 2000000	0.3043757	0.0111111	0.0702502	4 33305.04	0.0364354	4 3365										_

Step 8: Statistics calculation

Create a new tab by pressing the "+" button on the bottom of the page with the name "STATISTICS_ACCURACIES".

Import data into the input spreadsheet of the "STATISTICS_ACCURACIES" tab from the output of the "VALIDATE_MODEL(.predict)" tab by right-clicking on the input spreadsheet and then choosing "Import from SpreadSheet".

Calculate the statistical metrics for the regression by browsing: "Statistics" \rightarrow "Model Metrics" \rightarrow "Regression Metrics".

ile	Edit	Data Transforma	ition Analyt	tics Statistics	Plot Help					
				Domain -	APD					
IMPI	ORT	TRAIN_TEST_SPLI	NORMALIZE_	RAN S Model Me	trics	► R	egression Metric	:s		
				Probability	Distribution Fu	nctions CI	assification Met	rics		
			\	Descriptive	e Statistics			_		
				Confidence	e Intervals					
			WURRHULL,	Hypothesi	s Testing					
				Weight Ca	ses					
				Random N	lumber Generat	or				
				Design of	Experiments					
				Langiton						
		Col1	Col2 (D)	Col3 (S)	Col4 (D)	Col5 (S)	Col6 (D)	Col7 (S)	Col8 (D)	
User I	Header	User Row ID	kNN Prediction	Closest NN1	Distance from NN1	Closest NN2	Distance from NN2	Closest NN3	Distance from NN3	c
			9.3312024	Entry 107	0.1676399	Entry 4	0.2219115	Entry 116	0.2350152	Er
	2		25.1974449	Entry 117	0.3516779	Entry 101	0.4301765	Entry 86	0.4308555	Er
	3		21.9519381	Entry 10	0.2294060	Entry 114	0.2789554	Entry 6	0.3103474	Er
	4		19.9563764	Entry 117	0.2260597	Entry 128	0.2333629	Entry 9	0.2394963	Er
	5		21.7408855	Entry 10	0.2132167	Entry 139	0.2689456	Entry 11	0.2902531	Er
	6		20.7413738	Entry 123	0.2990883	Entry 125	0.3280152	Entry 14	0.3642761	Er
	7		10.5655667	Entry 106	0.2276968	Entry 18	0.2392316	Entry 1	0.2475311	Er
	8		9.1975497	Entry 121	0.2373282	Entry 36	0.2524254	Entry 20	0.2558688	Er
	9		19.2633812	Entry 84	0.2662981	Entry 124	0.2760216	Entry 12	0.3058974	Er
	10		10.7318509	Entry 2	0.2552910	Entry 4	0.3100214	Entry 113	0.3174439	Er
	11		24.1308480	Entry 139	0.1389985	Entry 141	0.2086915	Entry 161	0.2242341	Er
1	12		28.2789497	Entry 45	0.2569128	Entry 161	0.2940622	Entry 44	0.2973686	Er
	13		30.9301278	Entry 25	0.5081436	Entry 143	0.6147704	Entry 180	0.7325640	Er
1	14		13.4702913	Entry 142	0.1610765	Entry 155	0.2203273	Entry 18	0.2401367	Er
1	15		10.9296812	Entry 121	0.2692974	Entry 50	0.2829168	Entry 36	0.2904809	Er
1	16		11.7469717	Entry 155	0.2156831	Entry 97	0.2948418	Entry 36	0.2995778	Er

O Deservation Charlestics Mathias		~
Regression Statistics Metrics		~
Actual Value Column	Col13 BodyFat	•
Prediction Value Column	Col2 kNN Prediction	•
Execute	Cancel	

																			o ×
File Edit Da	ata Transforma	tion Analyti	cs Statistics	Plot Help														_	_
IMPORT	TRAIN_TEST_SPLT	NORMUZE, T	MIN SET TRAIN	LMODEL(44) E.MODEL(ped.t	FRESHCS, ACCURACES														
	Col1	Col2 (D)	Col3 (S)	Col4 (D)	Col5 (S)	Col6 (D)	Col7 (S)	Col8 (D)	c	[Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6	Col7	Col8	Col9
User Header	User Row ID	kNN Prediction	Closest NN1	Distance from NN1	Closest NN2	Distance from NN2	Closest NN3	Distance from NN3	י <mark>רו</mark> ר	User Header	User Row ID	Mean Squares Error	Root Mean Squared Erro	Mean Absolute Erro	R Squared				
1		9.3312024	Entry 107	0.1676399	Entry 4	0.2219115	Entry 116	0.2350152	Er	1		9.7045596	3.1152142	2.4368580	0.8697938				
2		25.1974449	Entry 117	0.3516779	Entry 101	0.4301765	Entry 86	0.4308555	Er	2				_		-			
3		21.9519381	Entry 10	0.2294060	Entry 114	0.2789554	Entry 6	0.3103474	Er	3									
4		19.9563764	Entry 117	0.2260597	Entry 128	0.2333629	Entry 9	0.2394963	Er	4									
5		21.7408855	Entry 10	0.2132167	Entry 139	0.2689456	Entry 11	0.2902531	Er	6									
6		20.7413738	Entry 123	0.2990883	Entry 125	0.3280152	Entry 14	0.3642761	Er	7									
7		10.5655667	Entry 106	0.2276968	Entry 18	0.2392316	Entry 1	0.2475311	Er	8									
8		9.1975497	Entry 121	0.2373282	Entry 36	0.2524254	Entry 20	0.2558688	Er	9									
9		19.2633812	Entry 84	0.2662981	Entry 124	0.2760216	Entry 12	0.3058974	Er	10									
10		10.7318509	Entry 2	0.2552910	Entry 4	0.3100214	Entry 113	0.3174439	Er	11									
11		24.1308480	Entry 139	0.1389985	Entry 141	0.2086915	Entry 161	0.2242341	Er	12						-	-		<u> </u>
12		28.2789497	Entry 45	0.2569128	Entry 161	0.2940622	Entry 44	0.2973686	Er	13	_								<u> </u>
13		30.9301278	Entry 25	0.5081436	Entry 143	0.6147704	Entry 180	0.7325640	Er	14									
14		13.4702913	Entry 142	0.1610765	Entry 155	0.2203273	Entry 18	0.2401367	Er	16				-	-	-	-	-	
		10.0006010	Entry 121	0.2692974	Entry 50	0.2829168	Entry 36	0.2904809	Er	17								-	
15		10.9290612	Linuy 121	0.2032314					-										
15 16		11.7469717	Entry 155	0.2156831	Entry 97	0.2948418	Entry 36	0.2995778	Er	18									

Step 9: Reliability check of each record of the test set

Step 9.a: Create the domain

Create a new tab by pressing the "+" button on the bottom of the page with the name "EXCLUDE_BODYFAT".

Import data into the input spreadsheet of the "EXCLUDE_ BODYFAT" tab from the output of the "NORMALIZE _TRAIN_SET" tab by right-clicking on the input spreadsheet and then choosing "Import from SpreadSheet".

																		-	0	×
File Edit D	ata Transforma	tion Analyti	cs Statistics	Plot Help																
IMPORT	TRAIN_TEST_SPUT	NGRIMILIZE JA	NAN, SET TRAIN, SKOLU EST, SET ANDAR	MODELLAN SE, BODYFAT SKCEL(ped.t)	TATSTICS ACCURACES															
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (D)		Col1	Col2	Col3	Col4	Col5	Col6	Col7	Col8	Cols		Col10
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest	User Header	User Row ID										â
1		0.8529956	12.3000000	-1.7225084	-0.8604453	-0.5757451	-0.7801497	-0.95997	1											
2		1.6149861	6.1000000	-1.7995809	-0.2182566	0.5630251	0.1666149	-0.90035	2										_	
3		-0.6920058	25.3000000	-1.7995809	-0.8688952	-0.9553352	-1.6857505	-0.63804	3										_	-
4		0.8319752	12.4000000	-1.5683635	-0.1253082	0.6262902	-0.1215309	-0.18496	4										-	
5		1.8619762	4.1000000	-1.5683635	0.3816829	1.0058802	0.0019602	-0.02996	6										-	-
6		0.9265671	11.7000000	-1.7225084	0.6267287	0.8793502	1.6485072	-0.18496	7										-	-
7		1.4941187	7.1000000	-1.4912910	0.2211358	1.1324103	0.1666149	0.041573	8									-	-	-
8		1.3995267	7.8000000	-1.4142186	1.2266682	1.5120004	0.5370880	0.291959	9										_	
9		-0.1717502	20.8000000	-1.0288563	0.0267892	-0.1328900	0.1254512	0.101189	10											
10		-0.2137911	21.2000000	-1.1830012	0.8633245	0.3099651	0.5370880	0.351575	11											
11		-0.3241483	22.1000000	-0.7976389	0.2718349	-0.1328900	0.9898884	0.017727	12										_	_
12		-0.1770053	20.9000000	-0.7976389	-0.5731503	-1.0186002	-0.6978223	-0.24458	13										_	-
13		-1.1176695	29.0000000	-0.8747113	0.5422301	0.2467001	0.3312696	0.089265	14										-	-
14		-0.4082301	22.9000000	-1.0288563	0.9985222	0.2467001	1.6485072	0.768885	15										-	-
15		0.4010564	16.0000000	-1.3371461	0.1366372	-0.5757451	-0.0392035	0.673500	17										-	-
16		0.0279438	19.1000000	-1.3371461	-0.0239100	-0.5124801	0.4135969	0.256190	18										-	-
17		0.4483524	15.6000000	-1.1059287	-1.3336370	-0.4492151	-1.7269142	-1.80651	19										-	-
IMPORT TRAIN	LTEST_SPLIT	NORMALIZE_T	rain_set no	RMALIZE_TEST	set TRAIN_	MODEL(,fit)	LIDATE_MODE	L(.predict) ST	ATISTICS_ACCUR	ACIES EXCLU	DE_BODYFAT	+								> ×

Manipulate the data to exclude the column that corresponds to the "BodyFat" by browsing: "Data Transformation" \rightarrow "Data Manipulation" \rightarrow "Select Columns". Then select all the columns except the "BodyFat". The filtered table will appear on the output spreadsheet.

9		_						
File Edit C	Data Transforma	tion Analyti	ics Statistics	Plot Help				
	lormalizers							
IMPORT .	ata Manipulatio	n 🕨 Remove	e Column(s)					
s s	plit	Select 0	Column(s)					
v	ariable Selection	n 🔸 Matrix 1	Transpose					
		Sort by	Column					
		Fill Miss	sing Column(s)	Values				
		NORMALIZE_	TEST_SE [®] DUDAT	E_MOTEL(pridict)	TATISTICS_ACURACIES			
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (
User Header	User Row ID	Density	BodyFat	Age	Weight	Height	Neck	Chest
1		0.8529956	12.3000000	-1.7225084	-0.8604453	-0.5757451	-0.7801497	-0.95997
2		1.6149861	6.1000000	-1.7995809	-0.2182566	0.5630251	0.1666149	-0.90035
3		-0.6920058	25.3000000	-1.7995809	-0.8688952	-0.9553352	-1.6857505	-0.63804
4		0.8319752	12.4000000	-1.5683635	-0.1253082	0.6262902	-0.1215309	-0.18496
5		1.8619762	4.1000000	-1.5683635	0.3816829	1.0058802	0.0019602	-0.02996
6		0.9265671	11.7000000	-1.7225084	0.6267287	0.8793502	1.6485072	-0.18496
7		1.4941187	7.1000000	-1.4912910	0.2211358	1.1324103	0.1666149	0.041573
8		1.3995267	7.8000000	-1.4142186	1.2266682	1.5120004	0.5370880	0.291959
9		-0.1717502	20.8000000	-1.0288563	0.0267892	-0.1328900	0.1254512	0.101189
10		-0.2137911	21.2000000	-1.1830012	0.8633245	0.3099651	0.5370880	0.351575
11		-0.3241483	22.1000000	-0.7976389	0.2718349	-0.1328900	0.9898884	0.017727
12		-0.1770053	20.9000000	-0.7976389	-0.5731503	-1.0186002	-0.6978223	-0.24458
13		-1.11/6695	29.0000000	-0.8747113	0.5422301	0.2467001	0.3312696	0.089265
14		-0.4082301	22.9000000	-1.0288563	0.9985222	0.246/001	1.6485072	0.768885
15		0.0070420	10.000000	1.33/1401	0.0320102	-0.5/5/451	-0.0392035	0.073500
10		0.0279438	15.6000000	-1.33/1461	-0.0239100	-0.5124801	-1 7260142	-1.90651
17	<	0.4483024	13.0000000	-1.1059287	-1.3330370	-0.4492151	-1.7209142	-1.80051
IMPORT TRAIN	N_TEST_SPLIT	NORMALIZE_T	RAIN_SET NO	RMALIZE_TEST	_SET TRAIN_N	ODEL(.fit) V	ALIDATE_MODE	L(predict)

Create a new tab by pressing the "+" button on the bottom of the page with the name "DOMAIN".

Import data into the input spreadsheet of the "DOMAIN" tab from the output of the "EXCLUDE_ BODYFAT" tab by right-clicking on the input spreadsheet and then choosing "Import from SpreadSheet".

																		- 0	\times
File Edit D	ata Transforma	tion Analytic	cs Statistics	Plot Help															
IMPORT	TRAIN_TEST_SPLIT	NORMALIZE (R	AIN SET TRAIN SKOLU	, MODEL(AL) DE, BODYFAT	Domain Tristic <u>a</u> coraces														
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (6	Col1	Col2	Col3	Col4	Col5	Col6	Col7	Col8	Col9	Col10
User Header	User Row ID	Density	Age	Weight	Height	Neck	Chest	Abdom	User Header	User Row ID									î î
1		0.8529956	-1.7225084	-0.8604453	-0.5757451	-0.7801497	-0.9599714	-0.7198	1										
2		1.6149861	-1.7995809	-0.2182566	0.5630251	0.1666149	-0.9003557	-0.9228	2										
3		-0.6920058	-1.7995809	-0.8688952	-0.9553352	-1.6857505	-0.6380463	-0.4706	3										
4		0.8319752	-1.5683635	-0.1253082	0.6262902	-0.1215309	-0.1849666	-0.4152	4										
5		1.8619762	-1.5683635	0.3816829	1.0058802	0.0019602	-0.0299656	-0.9689	5										
6		0.9265671	-1.7225084	0.6267287	0.8793502	1.6485072	-0.1849666	-0.4060	7										
7		1.4941187	-1.4912910	0.2211358	1.1324103	0.1666149	0.0415733	-0.8674	8										
8		1.3995267	-1.4142186	1.2266682	1.5120004	0.5370880	0.2919595	-0.1938	9										
9		-0.1717502	-1.0288563	0.0267892	-0.1328900	0.1254512	0.1011891	-0.1292	10										
10		-0.2137911	-1.1830012	0.8633245	0.3099651	0.5370880	0.3515753	0.81197	11										
11		-0.3241483	-0.7976389	0.2718349	-0.1328900	0.9898884	0.0177270	0.31368	12										
12		-0.1770053	-0.7976389	-0.5731503	-1.0186002	-0.6978223	-0.2445823	-0.0185	13										
13		-1.1176695	-0.8747113	0.5422301	0.2467001	0.3312696	0.0892659	0.31368	14										
14		-0.4082301	-1.0288563	0.9985222	0.2467001	1.6485072	0.7688856	0.41519	15										
15		0.4010564	-1.3371461	0.1366372	-0.5757451	-0.0392035	0.6735003	-0.3137	10										
16		0.0279438	-1.3371461	-0.0239100	-0.5124801	0.4135969	0.2561900	0.26755	18										+
17		0.4483524	-1.1059287	-1.3336370	-0.4492151	-1.7269142	-1.8065152	-1.5318	19										
	<()	-	1			1			<		-				-			
IMPORT TRAIN	TEST SPLIT	NORMALIZE TH	RAIN SET NO	RMALIZE TEST	SET TRAIN M	AODEL(.fit) VA	UDATE MODE	L(.predict)	STATISTICS ACCURA	CIES EXCLUE	E BODYFAT	DOMAIN -							

Create the domain of applicability by browsing: "Statistics" \rightarrow "Domain APD".

File Edit	Data Transformation	Analytics	Statistics	Plot Help				
IMPORT	Data Transformation	Analytics	Statistics Domain - A Model Met Probability Descriptive Confidence Hypothesis Weight Ca: Random N Design of E	Plot Help APD Distribution F Statistics Intervals Testing ses umber Genera Experiments	unctions			
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8
User Header	User Row ID De	nsity Ag	ge	Weight	Height	Neck	Chest	Abdom
1	0.8	529956 -1	.7225084	-0.8604453	-0.5757451	-0.7801497	-0.9599714	-0.7198
2	1.6	149861 -1	.7995809	-0.2182566	0.5630251	0.1666149	-0.9003557	-0.9228
3	-0.	6920058 -1	.7995809	-0.8688952	-0.9553352	-1.6857505	-0.6380463	-0.4706
4	0.8	319752 -1	.5683635	-0.1253082	0.6262902	-0.1215309	-0.1849666	-0.4152
5	1.8	619762 -1	.5683635	0.3816829	1.0058802	0.0019602	-0.0299656	-0.9689
6	0.9	265671 -1	.7225084	0.6267287	0.8793502	1.6485072	-0.1849666	-0.4060
7	1.4	941187 -1	.4912910	0.2211358	1.1324103	0.1666149	0.0415733	-0.8674
8	1.3	995267 -1	.4142186	1.2266682	1.5120004	0.5370880	0.2919595	-0.1938
9	-0.	1717502 -1	.0288563	0.0267892	-0.1328900	0.1254512	0.1011891	-0.1292
10	-0.	2137911 -1	.1830012	0.8633245	0.3099651	0.5370880	0.3515753	0.81197
11	-0.	3241483 -0	.7976389	0.2718349	-0.1328900	0.9898884	0.0177270	0.31368
12	-0.	1770053 -0	.7976389	-0.5731503	-1.0186002	-0.6978223	-0.2445823	-0.0185
13	-1.	1176695 -0	.8747113	0.5422301	0.2467001	0.3312696	0.0892659	0.31368
14	-0.4	4082301 -1	.0288563	0.9985222	0.2467001	1.6485072	0.7688856	0.41519
15	0.4	010564 -1	.3371461	0.1366372	-0.5757451	-0.0392035	0.6735003	-0.3137
16	0.0	279438 -1	.3371461	-0.0239100	-0.5124801	0.4135969	0.2561900	0.26755
17	0.4	483524 -1	.1059287	-1.3336370	-0.4492151	-1.7269142	-1.8065152	-1.5318
IMPORT TRA	AIN TEST SPLIT	RMALIZE TRAIL		RMALIZE TEST	SET TRAIN I	MODEL(.fit)	ALIDATE MODE	L(pre

🖯 Domain - APD		Х
APD = d + Z σ , Z= 0.5		
Perform Computations CPU (double precision)	•	
Execute Cancel		

The results will appear on the output spreadsheet.

MPORT	TRAN, TEST, SPUT	NORMALIZE, T	AN, SET TRAIN, Exclus Est, set yeldat	, MODEL(.4K) DE, BODYFAT	Domain Thistics,accuraces														
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (I		Col1	Col2 (D)	Col3 (D)	Col4 (S)	Col5	Col6	Col7	Col8	Col9	
er Header	User Row ID	Density	Age	Weight	Height	Neck	Chest	Abdom	User Header	User Row ID	Domain	APD	Prediction						
		0.8529956	-1.7225084	-0.8604453	-0.5757451	-0.7801497	-0.9599714	-0.7198	1		0E-7	3.7247999	reliable						1
2		1.6149861	-1.7995809	-0.2182566	0.5630251	0.1666149	-0.9003557	-0.9228	2		OE-7	3.7247999	reliable						ł
3		-0.6920058	-1.7995809	-0.8688952	-0.9553352	-1.6857505	-0.6380463	-0.4706	3		0E-7	3.7247999	reliable						ł
4		0.8319752	-1.5683635	-0.1253082	0.6262902	-0.1215309	-0.1849666	-0.4152	4		0E-7	3.7247999	reliable						
5		1.8619762	-1.5683635	0.3816829	1.0058802	0.0019602	-0.0299656	-0.9689	6		05.7	2 7247999	reliable						
6		0.9265671	-1.7225084	0.6267287	0.8793502	1.6485072	-0.1849666	-0.4060	7		05-7	3.7247555	reliable						
7		1.4941187	-1,4912910	0.2211358	1.1324103	0.1666149	0.0415733	-0.8674	8		0E-7	3.7247999	reliable						
8		1.3995267	-1.4142186	1.2266682	1.5120004	0.5370880	0.2919595	-0.1938	9		0E-7	3.7247999	reliable						
9		-0.1717502	-1.0288563	0.0267892	-0.1328900	0.1254512	0.1011891	-0.1292	10		0E-7	3.7247999	reliable						
10		-0.2137911	-1.1830012	0.8633245	0.3099651	0.5370880	0.3515753	0.81197	11		0E-7	3.7247999	reliable						
11		-0.3241483	-0.7976389	0.2718349	-0.1328900	0.9898884	0.0177270	0.31368	12		0E-7	3.7247999	reliable						
12		.0 1770053	-0.7976389	-0.5731503	-1.0186002	-0.6978223	-0.2445823	-0.0185	13		OE-7	3.7247999	reliable						
12		-1 1176605	-0.9747112	0.5422201	0.2467001	0.2212606	0.0002650	0.21260	14		0E-7	3.7247999	reliable						
		0.4093201	1.0200562	0.0005222	0.2407001	1.6495070	0.0092039	0.41510	15		0E-7	3.7247999	reliable						
14		-0.4062301	- 1.0208563	0.9903222	0.240/001	1.0405072	0.7000000	0.41315	16		OE-7	3.7247999	reliable						
15		0.4010564	-1.33/1461	0.1306372	-0.5/5/451	-0.0392035	0.0735003	-0.3137	17		0E-7	3.7247999	reliable						
16		0.0279438	-1.33/1461	-0.0239100	-0.5124801	0.4135969	0.2561900	0.26755	18		0E-7	3.7247999	reliable						
							1 4 0075450				105.7	12 22 42000	I colling to be a set of the set						

Step 9.b: Check the test set reliability

Create a new tab by pressing the "+" button on the bottom of the page with the name "EXCLUDE_BODYFAT_TEST_SET".

Import data into the input spreadsheet of the "EXCLUDE_ BODYFAT _TEST_SET" tab from the output of the "NORMALIZE _TEST_SET" tab by right-clicking on the input spreadsheet and then choosing "Import from SpreadSheet".

Filter the data to exclude the column that corresponds to the "BodyFat" by browsing: "Data Transformation" \rightarrow "Data Manipulation" \rightarrow "Select Columns". Then select all the columns except "BodyFat".

		don Analyti	cs Statistics	Plot Help				
	lormalizers	•						
IMPORT	ata Manipulatio	n 🕨 Remove	Column(s)					
s s	plit	Select C	olumn(s)					
V	ariable Selection	Matrix T	ranspose					
		Sort by	Column		DOMAIN			
		Fill Miss	ing Column(s)	Values				
				_				
			ALDAT	MCCE.(pedit	TATISTICS_ACCURACIES			
			BOUDH	KONAT 151 52				
			_					
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8 (
User Header	Col1 User Row ID	Col2 (D) Density	Col3 (D) BodyFat	Col4 (D)	Col5 (D) Weight	Col6 (D) Height	Col7 (D)	Col8 (
User Header 1 2	Col1 User Row ID	Col2 (D) Density 1.0789652 -1.0808837	Col3 (D) BodyFat 10.4000000 28.7000000	Col4 (D) Age -1.4912910 -1.6454360	Col5 (D) Weight 0.1704366 0.1535369	Col6 (D) Height 0.5630251 0.3099651	Col7 (D) Neck -0.2861856 -1.5210958	Col8 (Chest 0.077342 -0.45919
User Header 1 2 3	Col1 User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564	Col3 (D) BodyFat 10.4000000 28.7000000 20.9000000	Col4 (D) Age -1.4912910 -1.6454360 -1.6454360	Col5 (D) Weight 0.1704366 0.1535369 1.0323216	Col6 (D) Height 0.5630251 0.3099651 1.1956753	Col7 (D) Neck -0.2861856 -1.5210958 0.3724333	Col8 (Chest 0.077342 -0.45919 0.399267
User Header 1 2 3 4	Col1 User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336	Col3 (D) BodyFat 10.4000000 28.7000000 20.9000000 19.2000000	Col4 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.4912910	Col5 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889	Col6 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250	Col7 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223	Col8 (Chest 0.077342 -0.45919 0.399267 0.470806
User Header 1 2 3 4 5	Col1 User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336 0.3379951	Col3 (D) BodyFat 10.400000 28.700000 20.900000 19.200000 16.500000	Col4 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.4912910 -0.9517838	Col5 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889 1.0830207	Col6 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502	Col7 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700	Col8 (Chest 0.077342 -0.45919 0.399267 0.470806 0.601961
User Header 1 2 3 4 5 6	Coll User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336 0.3379951 0.4956483	Col3 (D) BodyFat 10.400000 28.7000000 20.900000 19.200000 16.500000 15.200000	Col4 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.4912910 -0.9517838 -1.3371461	Col5 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889 1.0830207 0.7027773	Col6 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502 -0.0696250	Co17 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700 1.3191978	Col8 (Chest 0.077342 -0.45919 0.399267 0.470806 0.601961 1.221965
User Header 1 2 3 4 5 6 7 2	Coll User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336 0.3379951 0.4956483 0.6427913 0.5427913	Col3 (D) Bodyfat 10.4000000 28.7000000 20.9000000 19.2000000 16.5000000 15.2000000 14.000000	Col4 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.4912910 -0.9517838 -1.3371461 -1.3371461	Col5 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889 1.0830207 0.7027773 -0.9618435	Col6 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502 -0.0696250 -0.5757451 0.6230421	Co17 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700 1.3191978 -1.4799322 -1.4799322	Col8 (Chest 0.077342 -0.45919 0.399267 0.470806 0.601961 1.221965 -1.30574 4.40551
User Header 1 2 3 4 5 6 7 7 8 9	Cott User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336 0.3379951 0.4956483 0.6427913 1.3942716 0.4082301	Col3 (D) BodyFat 10.400000 28.7000000 29.200000 19.200000 15.200000 15.200000 14.000000 20.900000	Col4 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.4912910 -0.9517838 -1.3371461 -1.3371461 -0.8747113 -1.1059287	Col5 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889 1.0830207 0.7027773 -0.9618435 -1.6293819 -1.0716916	Col6 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502 -0.0696250 -0.5757451 -0.6390101	Col7 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700 1.3191978 -1.4799322 -0.7801497 0.300159	Col8 (Chest 0.077342 -0.45919 0.399267 0.470806 0.601961 1.221965 -1.30574 -1.49651 -0.44277
User Header 1 2 3 4 5 6 7 7 8 9 9 10	Cott User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336 0.3379951 0.4956483 0.6427913 1.3942716 -0.9108018	Col3 (D) BodyFat 10.400000 28.7000000 20.900000 19.200000 15.200000 15.200000 24.000000 2.9.900000 15.200000 14.000000 22.900000 11.800000	Col4 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.4912910 -0.9517838 -1.3371461 -1.3371461 -0.8747113 -1.1059287 -1.4142186	Col5 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889 1.0830207 0.7027773 -0.9618435 -1.6293819 -1.0716916 -0.3957024	Col6 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502 -0.0696250 -0.5757451 -0.6390101 -0.309651	Co17 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700 1.3191978 -1.4799322 -0.7810497 0.2901059 0.0019602	Col8 (Chest 0.077342 -0.45919 0.399267 0.470806 0.601961 1.221965 -1.30574 -1.49651 -0.44727 -0.97189
User Header 1 2 3 4 5 6 7 8 9 10 11	Col1 User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.295564 0.0174336 0.3379951 0.4956483 0.6427913 0.6427913 0.6427916 -0.4082301 0.9108018 -0.5558833	Col3 (D) BodyFat 10.400000 28.7000000 19.2000000 19.2000000 15.2000000 14.0000000 22.9000000 22.9000000 24.2000000 24.200000	Col4 (D) Age -1.4912910 -1.6454360 -1.4912910 -1.6454360 -1.4912910 -0.95137848 -1.3371461 -1.3371461 -0.8747113 -1.1059287 -1.4142186 -0.4122765	Co15 (D) Weight 0.1704366 0.1333369 1.0323216 0.0436889 1.0830207 0.7027773 -0.9618435 -1.6293819 -1.0716916 0.3957034 0.7519263	Col6 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502 -0.0696250 -0.5757451 -0.6390101 -0.6390101 -0.3099651 -0.0063600	Col7 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700 1.3191978 -1.479922 -0.7801497 0.2901059 0.0019602 0.1666149	Col8 (Chest 0.077342 -0.45919 0.399267 0.470806 0.601961 1.221965 -1.30574 -1.30574 -1.49651 -0.97189 0.637730
User Header 1 2 3 4 5 6 7 8 9 10 11 12	Cott User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336 0.4956483 0.6427913 1.3942716 -0.4082301 0.9108018 -0.5658833 -1.0493531	Col3 (D) Body/at 10.400000 28.700000 29.900000 19.200000 15.200000 14.000000 22.900000 22.900000 24.200000 24.200000 28.400000	Col4 (D) Age 1.4912910 -1.6454360 -1.6454360 -1.4912910 -0.9517838 -1.3371461 -0.8747113 -1.1059287 -1.4142186 -0.4122765 0.3584481	Co15 (D) Weight 0.1704366 0.1333369 1.0323216 0.0436889 1.0830207 0.7027773 -0.9618435 -1.6293819 -1.0716916 0.3957034 0.7519263 0.5760295	Col6 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502 -0.0696250 -0.5757451 -0.6390101 -0.6390101 -0.30396551 -0.0063800 -0.0439250 -0.04392151	Col7 (D) Neck 0.2861856 -1.5210586 0.3724333 -0.6978223 0.7840700 1.3191978 -1.4799322 -0.7801497 0.2901059 0.0019602 0.1666149 1.6485072	Col8 (Chest 0.077342 0.45919 0.399267 0.470806 0.601961 1.221965 -1.30574 -1.49651 -0.44727 -0.44727 0.637730 0.530422

Create a new tab by pressing the "+" button on the bottom of the page with the name "RELIABILITY".

Import data into the input spreadsheet of the "RELIABILITY" tab from the output of the "EXCLUDE_ BODYFAT _TEST_SET" tab by right-clicking on the input spreadsheet and then choosing "Import from SpreadSheet".

Check the predictions' reliability by browsing: "Analytics" \rightarrow "Existing Model Utilization". Then select as Model "(from Tab:) DOMAIN".

File Edit D	ata Transforma	tion Analyti	cs Statistics	Plot Help						
IMPORT	TRAIN_TEST_SPLI	Regress Classifie	iion tation						Existing Model Execution	×
		Clusteri Anoma Existing	ng ly Detection Model Utilizat	KOTAI JIST JIS	Domain Tatsic <u>a</u> corace Reliability				Model (from Tab:)DOMAIN Type APD Model Description Model Input Header -> Datatype	
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Col8	Density -> Double Age -> Double	
User Header	User Row ID	Density	Age	Weight	Height	Neck	Chest	Abdo	Weight -> Double	
1		1.0789652	-1.4912910	0.1704366	0.5630251	-0.2861856	0.0773428	-0.60	Height -> Double	
2		-1.0808837	-1.6454360	0.1535369	0.3099651	-1.5210958	-0.4591990	0.645	Neck -> Double	0
3		-0.2295564	-1.6454360	1.0323216	1.1956753	0.3724333	0.3992679	0.129	Chest -> Double	
4		0.0174336	-1.4912910	0.0436889	-0.0696250	-0.6978223	0.4708068	-0.21	Abdomen -> Double	
5		0.3379951	-0.9517838	1.0830207	0.8793502	0.7840700	0.6019614	0.692	Hip -> Double	
6		0.4956483	-1.3371461	0.7027773	-0.0696250	1.3191978	1.2219653	0.535		~
7		0.6427913	-1.33/1461	-0.9618435	-0.5757451	-1.4/99322	-1.3057428	-1.54		
8		1.3942716	-0.8747113	-1.0293819	-0.6390101	-0.7801497	-1.4965132	-1.09	Transfer Column(s) to Output	
9		-0.4082301	-1.1059287	-1.0716916	-0.0390101	0.0010603	-0.94/2/59	-0.39		
10		-0.5658832	-0.4122765	0.5957034	-0.0063600	0.1666149	0.6377300	0.728	Execute Cancel	
12		-0.3038833	0.3584481	0.5760205	-0.0003000	1 6485072	0.5304225	0.535		
13		-1 7272619	-0.0269142	2 8067905	0.3226850	2 1013077	3 2369779	3.063		
	<)		12.000		1		>		
IMPORT TRAIN	LTEST_SPLIT	NORMALIZE_T	RAIN_SET NO	ORMALIZE_TEST	_SET TRAIN_	MODEL(.fit) V	ALIDATE_MODE	EL(.predict)		

The results will appear on the output spreadsheet. We can observe that there are no unreliable samples in the test set.

		aon Anaiya	cs Statistics	Plot Help																
IMPORT	TRAIN_TEST_SPLIT	normule fr	ARL SET TRAIN, ST. SET SKALU VALDAT SKALUS	MODELLAR DE, 8004FAT SMOREL(pred-R SMOREL(pred-R	DOMAIN MISICLACORCE RELIABILITY															
	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Coll		1	Col1	Col2 (D)	Col3 (D)	Col4 (S)	Col5	Col6	Col7	Col8	Col9	Co
lser Header	Col1	Col2 (D)	Col3 (D)	Col4 (D)	Col5 (D)	Col6 (D)	Col7 (D)	Cole		User Header	Col1 User Row ID	Col2 (D) Domain	Col3 (D)	Col4 (S) Prediction	Col5	Col6	Col7	Col8	Col9	Co
lser Header	Col1 User Row ID	Col2 (D) Density	Col3 (D) Age -1.4912910	Col4 (D) Weight	Col5 (D) Height	Col6 (D) Neck	Col7 (D) Chest	Colle Abdo		User Header 1	Col1 User Row ID	Col2 (D) Domain 1.5014889	Col3 (D) APD 3.7247999	Col4 (S) Prediction reliable	Col5	Col6	Col7	Col8	Col9	Co
ser Header 1 2	Coll User Row ID	Col2 (D) Density 1.0789652	Col3 (D) Age -1.4912910 -1.6454360	Col4 (D) Weight 0.1704366 0.1535369	Col5 (D) Height 0.5630251	Col6 (D) Neck -0.2861856	Col7 (D) Chest 0.0773428	Col8		User Header 1 2	Col1 User Row ID	Col2 (D) Domain 1.5014889 2.3267637	Col3 (D) APD 3.7247999 3.7247999	Col4 (S) Prediction reliable reliable	Col5	Col6	Col7	Col8	Col9	Ca
ser Header 1 2 3	Col1 User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564	Col3 (D) Age -1.4912910 -1.6454360 -1.6454360	Col4 (D) Weight 0.1704366 0.1535369 1.0323216	Col5 (D) Height 0.5630251 0.3099651 1.1956753	Col6 (D) Neck -0.2861856 -1.5210958 0.3724333	Col7 (D) Chest 0.0773428 -0.4591990 0.3992679	Col8 Abdo -0.60 0.645		User Header 1 2 3	Col1 User Row ID	Col2 (D) Domain 1.5014889 2.3267637 1.7657758	Col3 (D) APD 3.7247999 3.7247999 3.7247999	Col4 (S) Prediction reliable reliable reliable	Col5	Col6	Col7	Col8	Col9	Co
ser Header 1 2 3 4	Col1 User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336	Col3 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.4912910	Col4 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889	Col5 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250	Col6 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223	Col7 (D) Chest 0.0773428 -0.4591990 0.3992679 0.4708068	Coll Abdo -0.60 0.645 0.129 -0.21		User Header 1 2 3 4	Col1 User Row ID	Col2 (D) Domain 1.5014889 2.3267637 1.7657758 1.4787916	Col3 (D) APD 3.7247999 3.7247999 3.7247999 3.7247999	Col4 (S) Prediction reliable reliable reliable reliable	Col5	Col6	Col7	Col8	Col9	
ser Header 1 2 3 4 5	Cot1 User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336 0.3370951	Col3 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.4912910	Col4 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889 1.0830207	Col5 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502	Col6 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700	Col7 (D) Chest 0.0773428 -0.4591990 0.3992679 0.4708068 0.6019614	Coll Abdo -0.60 0.645 0.129 -0.21		User Header 1 2 3 4 5	Col1 User Row ID	Col2 (D) Domain 1.5014889 2.3267637 1.7657758 1.4787916 1.4179878	Col3 (D) APD 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999	Col4 (5) Prediction reliable reliable reliable reliable reliable	Col5	Col6	Col7	Col8	Col9	
ser Header 1 2 3 4 5 6	Col1 User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336 0.3379951 0.4956483	Col3 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.4912910 -0.9517838 -1.3371461	Col4 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889 1.0830207 0.7027773	Col5 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502 -0.0596250	Col6 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700 1 3191978	Col7 (D) Chest 0.0773428 -0.4591990 0.3992679 0.4708068 0.6019614 1.2219653	Coll Abdo -0.60 0.645 0.129 -0.21 0.692 0.535		User Header 1 2 3 4 5 6 6	Col1 User Row ID	Col2 (D) Domain 1.5014889 2.3267637 1.7657758 1.4787916 1.4179878 2.1281217 2.1281217	Col3 (D) APD 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999	Col4 (S) Prediction reliable reliable reliable reliable reliable	Col5	Col6	Col7	Cot8	Col9	
Iser Header 1 2 3 4 5 6 7	Col1 User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336 0.3379951 0.4956483 0.6427913	Col3 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.4912910 -0.9517838 -1.3371461 -1.3371461	Col4 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889 1.0830207 0.7027773	Col5 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502 -0.0696250 -0.5757451	Col6 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700 1.3191978 -1 4799322	Col7 (D) Chest 0.0773428 -0.4591990 0.3992679 0.4708068 0.6019614 1.2219653 -1.3057428	Coll Abdo -0.60 0.645 0.129 -0.21 0.692 0.535 -1.54		User Header 1 2 3 4 5 6 7 9	Col1 User Row ID	Col2 (D) Domain 1.5014889 2.3267637 1.7657758 1.4787916 1.4179878 2.1281217 1.6798409	Col3 (D) APD 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999	Col4 (S) Prediction reliable reliable reliable reliable reliable reliable	Col5	Col6	Col7	Col8	Col9	Cc
ser Header 1 2 3 4 5 6 7 8	Cot1 User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336 0.3379951 0.4956483 0.6427913 1.3942716	Co13 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.4912910 -0.9517838 -1.3371461 -1.3371461	Col4 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889 1.0830207 0.7027773 -0.9618435 -1.523819	Co15 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502 -0.0696250 -0.5757451 -0.6390101	Col6 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700 1.3191978 -1.4799322	Col7 (D) Chest 0.0773428 -0.4591990 0.3992679 0.4708068 0.6019614 1.2219653 -1.3057428 -1.4965132	Coll Abdo -0.60 0.645 0.129 -0.21 0.692 0.535 -1.54		User Header 1 2 3 4 5 6 7 8 9	Col1 User Row ID	Col2 (D) Domain 1.5014889 2.3267637 1.7657758 1.4787916 1.4179878 2.1281217 1.6798409 1.6898091 1.6898091 1.7810073	Col3 (D) APD 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999	Col4 (S) Prediction reliable reliable reliable reliable reliable reliable reliable reliable	Col5	Col6	Col7	Col8	Col9	
ser Header 1 2 3 4 5 6 7 8 9	Cot1 User Row ID	Col2 (D) Density 1.079652 -1.0808837 -0.2295564 0.0174336 0.3379951 0.4956483 0.6427913 1.3942716 0.4092301	Co13 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.4912910 -0.9517838 -1.3371461 -1.3371461 -0.8747113 -0.8747113	Col4 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889 1.0830207 0.7027773 -0.9618435 -1.6293819	Co15 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502 -0.0696250 -0.5757451 -0.6390101	Col6 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700 1.3191978 -1.4799322 -0.7801497 0.200159	Col7 (D) Chest 0.0773428 -0.4591990 0.3992679 0.4708068 0.6019614 1.2219653 -1.3057428 -1.4965132 -0.4472759	Coll Abdo -0.60 0.645 0.129 -0.21 0.692 0.535 -1.54 -1.69 0.39		User Header 1 2 3 4 5 6 7 8 9 10	Col1 User Row ID	Col2 (D) Domain 1.5014889 2.3267637 1.7657758 1.4787916 1.4179878 2.1281217 1.6796409 1.6860791 1.7810073	Col3 (D) APD 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999	Col4 (S) Prediction reliable reliable reliable reliable reliable reliable reliable reliable reliable	ColS	Col6	Col7	Col8	Col9	
ser Header 2 3 4 5 6 7 8 9 10	Cot1 User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336 0.3379951 0.4956483 0.6427913 1.3942716 -0.408201 0.4920018	Col3 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.4912910 -0.9517838 -1.3371461 -1.3371461 -0.8747113 -1.1059287 -1.4142196	Col4 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889 1.0830207 0.7027773 -0.9618435 -1.6293819 -1.0716916 0.2057024	Co15 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502 -0.6996250 -0.5757451 -0.6390101 -0.6390101	Col6 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700 1.3191978 -1.4799322 -0.7801497 0.2901059 0.201059	Col7 (D) Chest 0.0773428 -0.4591990 0.4591990 0.4591990 0.4708068 0.6019614 1.2219653 -1.3057428 -1.4965132 -0.4472759 -0.9719006	Coll Abdo -0.60 0.645 0.129 -0.21 0.692 0.535 -1.54 -1.69 -0.39 1.28	3	User Header 1 2 3 4 5 6 7 8 9 10 11	Col1 User Row ID	Col2 (D) Domain 1.5014889 1.5014889 1.23267637 1.7657758 1.4787916 1.4779878 2.1281217 1.6799409 1.6800891 1.7810073 1.6927721 1.0927211	Col3 (D) APD 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999	Col4 (5) Prediction reliable reliable reliable reliable reliable reliable reliable reliable reliable reliable	Col5	Col6	Col7	Col8	Col9	
ser Header 1 2 3 4 5 6 7 8 9 10	Cott User Row ID	Col2 (D) Density 10.799652 -1.0008837 -0.2295564 0.0174336 0.4956483 0.6427913 1.3942716 -0.4082301 0.9108018 0.5658927	Col3 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.6454360 -1.4912910 -0.9517838 -1.3371461 -0.8747113 -1.1059287 -1.4142186 0.4032955	Col4 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889 1.0830207 0.7027773 -0.9618435 -1.6293819 -1.0716916 -0.3957034	Col5 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502 -0.6590250 -0.5757451 -0.6390101 0.3099651 0.309651	Col6 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700 1.3191978 -1.4799322 -0.7801497 0.2901059 0.0019602	Co17 (D) Chest 0.0773428 -0.4591990 0.4591990 0.4591990 0.4708068 0.6019614 1.2219653 -1.3057428 -1.4965132 -0.4772759 -0.9718946 0.4227200	Cold Abdo -0.60 0.645 0.129 -0.21 0.692 0.535 -1.54 -1.69 -0.39 -1.28		User Header 1 2 3 4 5 6 7 8 9 10 11 12	Col1 User Row ID	Col2 (D) Domain 1.5014889 2.3267637 1.7657758 1.4787916 1.4779878 2.1281217 1.6798409 1.6860891 1.7810073 1.6927721 1.0675948 1.8134546	Col3 (D) APD 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999	Col4 (S) Prediction reliable reliable reliable reliable reliable reliable reliable reliable reliable reliable reliable	Col5	Col6	Col7	Col8	Co19	
Iser Header 1 2 3 4 5 6 7 8 9 10 11 12 12 12 12 12 12 12 12 12	Col1 User Row ID	Col2 (D) Density 1.0789652 1.020857 0.2295564 0.0174336 0.0379951 0.4956483 0.6427913 1.3942716 -0.4082301 0.9108018 -0.5658833	Col3 (D) Age -1,4912910 -1,6454360 -1,6454360 -1,6454360 -1,4912910 -0,9517838 -1,3371461 -1,3371461 -0,8747113 -1,1059287 -1,4142186 -0,4122765 -0,2520441	Col4 (D) Weight 0.1704366 0.1535369 1.0323216 0.0436889 1.0830207 0.7027773 -0.9618435 -1.6293819 -1.0716916 -0.3957034 0.76129283 -5.729297	Col5 (D) Height 0.5630251 0.3099651 1.1956733 -0.0696250 0.8793502 -0.0696250 -0.0596250 -0.6390101 -0.6390101 0.3099651 -0.0093600	Col6 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700 1.3191978 -1.4799322 -0.7801497 0.2901059 0.0019602 0.1666149 1.424953	Co17 (D) Chest 0.0773428 -0.4591990 0.3992679 0.4708068 0.6019614 1.2219653 -1.3057428 -1.3057428 -1.3057428 -0.4472759 -0.9718946 0.6377309	Coll Abdo -0.60 0.645 0.129 -0.21 0.692 0.535 -1.54 -1.69 -0.39 -1.28 0.728 0.729		User Header 1 2 3 4 5 6 7 7 8 9 10 11 11 12 13	Col1 User Row ID	Col2 (D) Domain 1.5014889 2.3267637 1.7657758 1.478916 1.4179916 1.4179978 2.1281217 1.6796409 1.6860891 1.7810073 1.6927721 1.0675948 1.69348 3.5574064	Cei3 (D) APD 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999	Col4 (5) Prediction reliable reliable reliable reliable reliable reliable reliable reliable reliable reliable reliable reliable	Col5	Col6	Coi7	Col8	Col9	
Jser Header 1 2 3 4 5 6 7 8 9 10 11 12 2	Col1 User Row ID	Col2 (D) Density 1.0789652 -1.0808837 -0.2295564 0.0174336 0.337951 0.4956483 0.4956483 1.3942716 -0.4082301 0.9108018 -0.5658833 -1.0493531	Col3 (D) Age -1.4912910 -1.6454360 -1.6454360 -1.6454360 -0.9517838 -1.3371461 -1.3371461 -1.3371461 -1.3371461 -1.3371461 -0.95747113 -1.1059287 -1.4142186 -0.4122765 0.3584481 0.35926945	Col4 (D) Weight 0.1704366 0.1535369 1.0323216 0.436889 1.082027 0.7027773 -0.0518435 -1.6293819 -1.0716916 -0.3957034 0.7619263 0.57619263	Col5 (D) Height 0.5630251 0.3099651 1.1956753 -0.0696250 0.8793502 -0.05757451 -0.53757451 -0.5390101 0.3099651 -0.063800 -0.4492151 -0.4492151	Col6 (D) Neck -0.2861856 -1.5210958 0.3724333 -0.6978223 0.7840700 1.319178 -1.4799322 -0.7801497 0.2901059 0.0019602 0.1666149 1.6485072	Co17 (D) Chest 0.0773428 -0.4591990 0.3992679 0.4708068 0.6019614 1.221653 -1.3057428 -1.3057428 -1.3057428 -0.4472759 -0.9718946 0.6377309 0.5304225	Coll Abdo -0.60 0.645 0.129 -0.21 0.692 0.535 -1.54 -1.69 -0.39 -1.28 0.728 0.728 0.525		User Header 1 2 3 4 5 6 7 7 8 9 10 10 11 11 2 13 14	Col1 User Row ID	Col2 (D) Domain 1.5014889 2.3267637 1.7657758 1.4787916 1.479878 2.1281217 1.6798409 1.6860891 1.7810073 1.6927721 1.0675948 1.813456 3.5574064 1.2145013	Cel3 (D) APD 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999 3.7247999	Col4 (5) Prediction reliable reliable reliable reliable reliable reliable reliable reliable reliable reliable reliable reliable reliable	Col5	Col6	Col7	Col8	Col9	

Final Isalos Workflow

Following the above-described steps, the final workflow on Isalos will look like this:

